

University of Central Florida 2023-FRR-Presentation

at UC

### **Project Managers**



Nathan Stahl Aerostructures Manager



Alejandra Morales Systems Manager



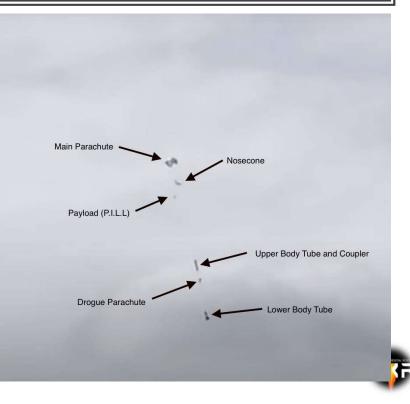
Emilio Pereira Payloads Manager



# Progress on Requirements

| Section                            | Completed | In Progress | Incomplete |
|------------------------------------|-----------|-------------|------------|
| General Requirements               | 10        | 1           | 0          |
| Vehicle Requirements               | 18        | 1           | 0          |
| Recovery System<br>Requirements    | 12        | 0           | 0          |
| Payload Experiment<br>Requirements | 2         | 1           | 0          |
| Safety Requirements                | 4         | 0           | 0          |
| Final Flight<br>Requirements       | 0         | 2           | 0          |
|                                    |           |             |            |

### Full Scale Flight


| Launch Date       | 3/4/2023                                        |
|-------------------|-------------------------------------------------|
| Temperature       | 85°F                                            |
| Weather           | Partly Cloudy                                   |
| Launch Wind Speed | 15mph SW                                        |
| Launch Location   | Spaceport Rocketry Association, Palm<br>Bay, FL |
| Predicted Apogee  | 5040ft                                          |
| Recorded Apogee   | 4215                                            |





### Payload Demonstration Flight

| Launch Date       | 3/18/2023                                       |
|-------------------|-------------------------------------------------|
| Temperature       | 86°F                                            |
| Weather           | Partly Cloudy                                   |
| Launch Wind Speed | 14mph NW                                        |
| Launch Location   | Spaceport Rocketry Association,<br>Palm Bay, FL |
| Predicted Apogee  | 4044ft                                          |
| Recorded Apogee   | 4088ft                                          |



#### Payload Demonstration Flight

- Payload Retention System functioned as intended
- Successful Main Deployment
- Rocket fell in a canal
- All electronics have been lost and are currently in the process of being recovered or replaced





### Payload Demonstration Flight





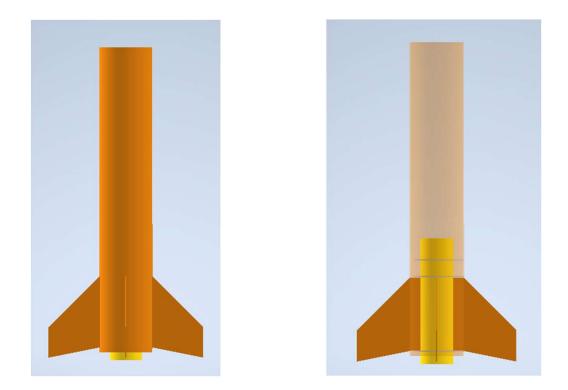


# Vehicle Design



### Vehicle Design

- Dual deployment with GPS tracking in the nosecone
- Student Developed Composite Body




| Rail Exit Velocity                     | 87.2 ft/s    |
|----------------------------------------|--------------|
| Thrust-to-Weight Ratio                 | 11:1         |
| Maximum Velocity                       | 633 ft/s     |
| Maximum Acceleration                   | 9.57G        |
| Descent Time                           | 72.38s       |
| Highest Kinetic Energy Upon<br>Landing | 40.85 ft-lbs |
| Max Drift                              | 2331'        |

| Vehicle Name             | Asclepius          |
|--------------------------|--------------------|
| Apogee                   | 5507               |
| Vehicle Length           | 87"                |
| Expected Lift-off Weight | 26.3 lbs           |
| Body Tube Outer Diameter | 5.1"               |
| Body Tube Inner Diameter | 5.00"              |
| Launch Pad Stability     | 2.74 cal           |
| Launch Pad CoM           | 51.049" aft of tip |
| Launch Pad CoP           | 65.023" aft of tip |

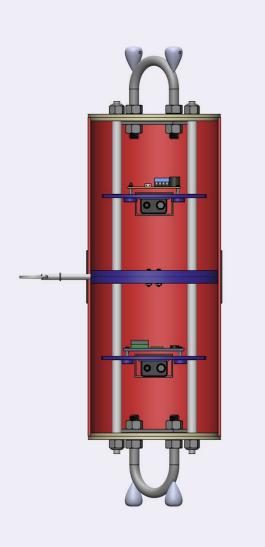


# Separation Points



- Estimated Weight: 4 lbm
- Overall length of 34"
- Contains fins, motor tube, motor, centering rings, tail cone and motor retainer
- Booster tube made from Carbon Fiber

### **Booster Section**




## Fins

- 4 swept trapezoidal fins
- Dimensions
  - Height: 5.5"
  - Root Cord: 7"
  - Tip Cord: 3"
  - Sweep Length: 5"
- Epoxied in
- G10 Fiberglass Plates







# **Overall Avionics Bay Design**

- 12" in length
- 2" switch band
- Currently 2.3 lbm
- Forward bay for main parachute and Aft bay for drogue parachute
- Connects to rocket with shear pins
- Uses primary and redundant altimeters and free-floating charges
- Utilizes 3D printed plate support structure

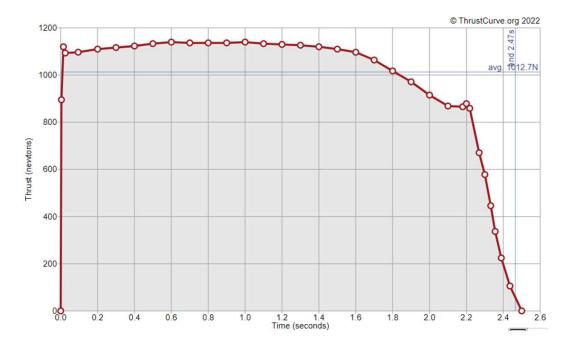


# Payload

### Nosecone

- 3.47lbs
- 10" Length
- 4.5" OD
- Contains Primary Experiment
- Connected to main Kevlar shock cord with 4" section of nylon shock cord





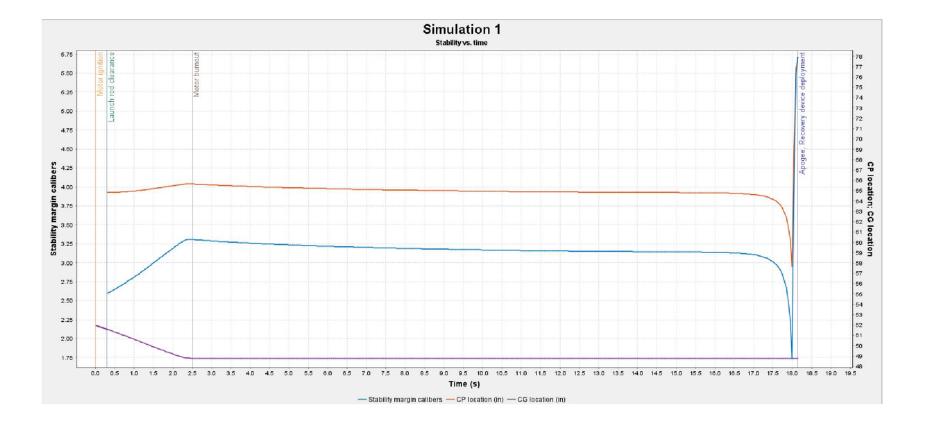

- 3.5 lb
- 16" Length
- 5.1" OD
- Houses the telemetry unit



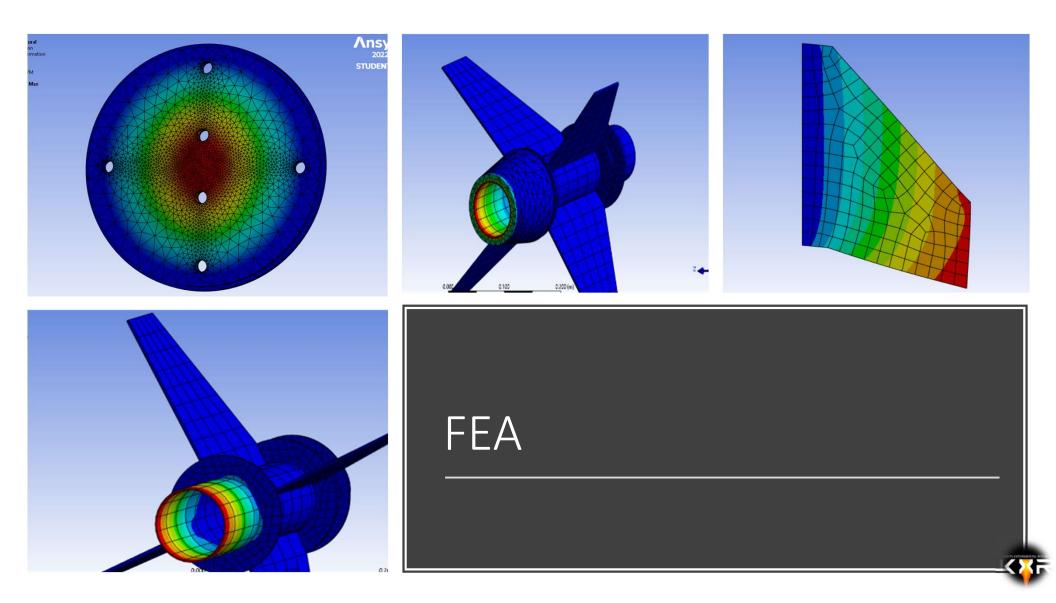
### Final Motor Choice – Aerotech K1000T

| Motor Brand/Designation        | n AeroTech K1000T |
|--------------------------------|-------------------|
| Max/Average Thrust (Ib)        | 1674N/1066N       |
| Total Impulse (lbf-s)          | 2511.5Ns          |
| Mass Before/After Burn<br>(oz) | 2602g/1392.5g     |
| Liftoff Thrust (N)             | 1105N             |




# Altitude/Drift Predictions

| 5mph Wind Speed | Apogee (ft) |  |
|-----------------|-------------|--|
| Launch Angle    |             |  |
| 0               | 5205        |  |
| 5               | 5152        |  |
| 10              | 5077        |  |
| 15              | 4972        |  |


|                  | Drift Distance (ft) |  |
|------------------|---------------------|--|
| Wind Speed (mph) | OpenRocket          |  |
| 0                | 9.75                |  |
| 5                | 25                  |  |
| 10               | 240                 |  |
| 15               | 450                 |  |
| 20               | 550                 |  |

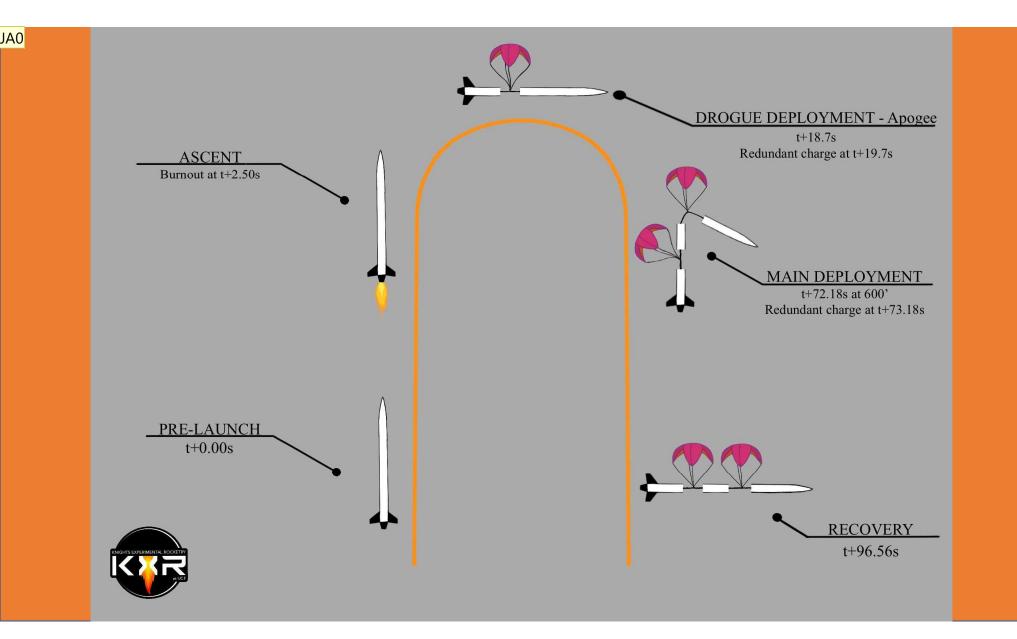


# Stability and Flight Criteria








# Mass Margins

| Section    | Expected Mass (lb) | Current Mass (lb) |
|------------|--------------------|-------------------|
| Nose Cone  | 3.1                | 3.5               |
| Upper Tube | 2.9                | 2.7               |
| Payload    | 5                  | 5.1               |
| Coupler    | 3.8                | 2.3               |
| Lower Tube | 4.6                | 5.9               |
| Motor      | 6.6                | 6.6               |
| Total      | 26                 | 26.3              |



# Recovery Design





JA0 On this slide, simply state the main idea. Main Idea: Flight diagram with time intervals taken from the Vertical Motion vs TIme graph plotted by OpenRocket. Jericho Antoine, 2023-02-01T14:19:05.042

## Primary Altimeter

## Redundant Altimeter

- StratoLoggerCF
  - 9V Alkaline Battery
  - Easily Programmable
  - Better for Flight Data
    - Battery, temp, velocity, altitude, etc.



- RRC2+
  - 9V Alkaline Battery
  - Large success with RRC2+ in past projects
  - Cohesive Flight Data
  - Easily Programmable





## Drogue Parachute

# Main Parachute

#### • 30" Ultra x-form Parachute

- TopFlight
- CD: .725
- Materials: Ripstop Nylon
- Weight: 2.4 oz
- Packing Volume: 16.40<sup>^3</sup>



- 84" Standard Parachute
  - Rocketman
  - CD: .97
  - Materials: Ripstop Nylon
  - Weight: 8 oz
  - Packing Volume: 45.94^3

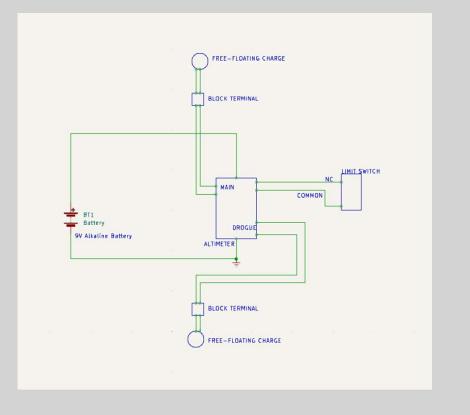




Slide 23

- AZ0 update to new chutes Aleksandr Zhuchkan, 2023-01-08T22:25:45.625
- JA1 Mention that the snatch force for main is 561.977 lbf at 100 ft/s Jericho Antoine, 2023-02-01T17:42:31.403

# Heat Shielding


### Attachment Hardware

- Nomex Blankets
- Heat-Resistant Epoxy Coating
- Drogue Shock Cord
  - Kevlar
  - 360 inches
- Main Shock Cord
  - Kevlar
  - 300 inches
- PILL Shock Cord
  - Kevlar
  - 48 inches
- Harness/Airframe Interfaces



# Wiring Diagram

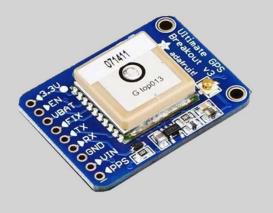
### **Ejection Charges**



- Ejection Charge Type
  - FFFFg Black Powder

#### • Ejection Charge Locations

- Forward AEB Bulkhead
- Aft AEB Bulkhead
- Drogue
  - 3.5g
- Main
  - 4.5g




### Tracking Devices

#### Featherweight GPS

- Frequency Channel 24B
- Extremely long range
- Independent of all other avionics
   Adafruit Ultimate GPS
- Frequency: 443.2mHz (KQ4FDO)
- Part of SRAD flight computer
- Long range







Slide 26

#### AZ0

add an image possibly Aleksandr Zhuchkan, 2023-01-09T05:20:00.861

#### JA1

### Avionics and Recovery Testing

| Test                                    | Description                                                                                                                               | System Under Test                                                    | Status     |
|-----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|------------|
| Altimeter and<br>Battery Drain Test     | Altimeters are hooked up to their<br>respective batteries and are ran until<br>the battery is dead to test the<br>endurance of the system | Stratologger CF and<br>RRC2+ Altimeters,<br>9V Alkaline<br>Batteries | Complete   |
| Parachute Drop<br>Test                  | Both Drogue and main parachutes are<br>attached to a weight and dropped from a<br>height to test parachute functionality                  | Drogue and Main<br>Parachute                                         | Complete   |
| Altimeter Ejection<br>Vacuum Test       | Altimeters are tested for reliability and<br>pass if they consistently ignite both<br>ejection charges at the appropriate time            | Stratologger CF and<br>RRC2+ Altimeters                              | Incomplete |
| Black Powder<br>Ejection Charge<br>Test | Black powder ejection systems are<br>tested to fulfill the appropriate<br>separation between stages                                       | Drogue and Main<br>Parachute, Ejection<br>Charge System              | Complete   |



#### Slide 27

- JA0 Objective Main Idea: Define the word appropriate for body tube separation. Jericho Antoine, 2023-02-01T17:56:40.031
- JA1 Success Criteria Main Idea: In order for our test to be deemed successful, an appropriate body tube separation must occur whilst following all safety protocols listed by our safety officer. Jericho Antoine, 2023-02-01T18:00:05.930

#### Altimeter Continuity and Battery Drain Test

### Parachute Drop Test

- Objective: Altimeters fulfill the requirements for pad and flight duration
- Success Criteria: Both altimeters must maintain continuity for at least 3 hours.
- Methodology: Wire each respective system and connect to batteries. Check for continuity and battery drain.
- Results: Both altimeter systems passed the continuity and battery drain test

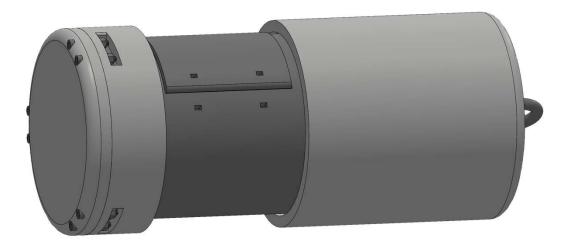
- Objective: Parachutes fulfill necessary requirements that they open consistently to allow for full deployment after ejection
- Success Criteria: Both parachutes must fully deploy
- Methodology: Drop and video record drogue and main attached to a weight and drop from the top of a parking garage to simulate ejection
- Results: Both the drogue and main parachute passed the test



# Altimeter Ejection Vacuum Test

# Black Powder Ejection Test

- Objective: Altimeters fulfill the requirements that they consistently ignite both ejection charges at appropriate times
- Success Criteria: both altimeters must ignite the drogue parachute charges at apogee or 1s after apogee and the main parachute charges at the correct altitude
- Methodology: simulate a flight with both altimeter systems in a homemade vacuum chamber, recording event data.
- Results: TBD


- Objective: Black powder ejection systems fulfill the requirements that they create appropriate separation between airframe sections
- Success Criteria: Both black powder canisters must separate the correct airframe sections the appropriate amount while not damaging electronic components or the airframe, as well as fully eject parachutes
- Methodology: ignite both black powder charges from a distance with full vehicle on the ground.
- Results: both black powder ejection systems passed this test



# Payload Design



### **PILL** Overview



- PILL Mission Objectives:
  - House and deploy a camera capable of rotating 360° about the z-axis, whilst selforienting itself parallel to the horizon
- Sub-system Breakdown
  - Experiments
  - Telemetry
  - Ground Station

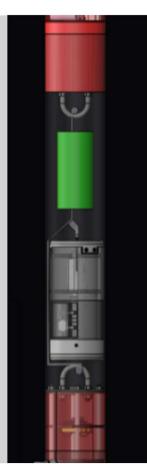


# PILL As-Built Design

#### Lead Elevator

- Actuating Mechanism
- Rotation Mechanism
- Camera
- **Electronics Housing**
- RTC
- Raspberry PI
- BNO055
- RAFCO system

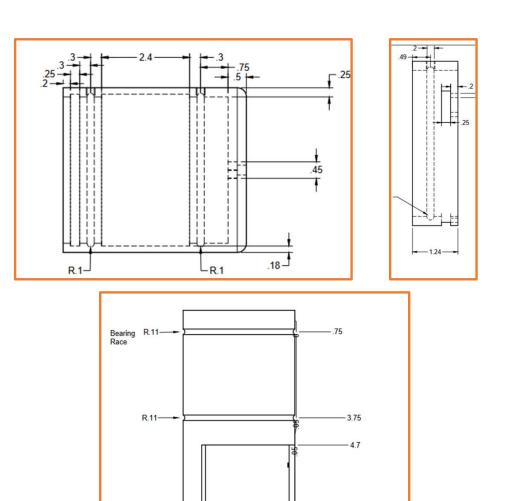









### Descent and Landing As-Built Design Payload (Integration)


- Payload (PILL) is attached to main shock cord by an extra 4ft of shock cord
- Payload is pushed out with the main parachute
- Main parachute deploys
- Payload remains attached to the shock cord
- Payload and rocket reach touchdown
- Camera Exits Payload housing



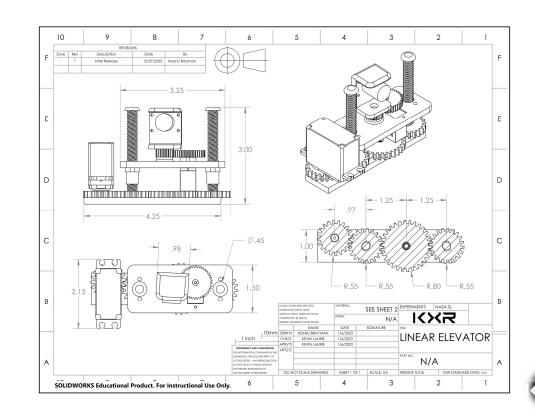


### Self-Orientation As-Built Design

- Ball bearing mechanism to orient inner tube
- Dry lubricant for rotation
- Ballast on inner sled for low center of gravity
- Grooves with cap for ball bearing insertion
- Plastic pellets and metal ball bearings utilized as options



R.11-




7.6

8.25


## Panoramic Image Capture As Built Design

- Approximately 2.5" in additional height
- Removes distortion from previous designs
- Rotates 360 degrees about z-axis
- Utilizes IMU to prevent early acceptance of RAFCO commands
- Smarza PI 4 Cam for FOV requirements



# ADSAB As-Built Design

- Dual sleds for better use of space
- Simpler Design
- Allows for proper taper along Von Karmaan line
- Hoists
  - 2200mAh LiPo
  - Flight Computer
  - GPS





### Payload Demonstration Flight / Testing

Payload Demonstration Flight Location: Palm Bay with Spaceport Rocketry Association Date: March 18, 2023

### List of tests to be completed

- Battery Longevity Test
- Camera, IMU, Limit Switch, RTC Test
- Radio Test
- Self Orientation Test
- Software Test
- Ground Test
- PILL Drop Test
- Hinge Seal Test
- Dry Lubricant Seepage Test
- PILL Ejection Test





| <ul> <li>Objective: Measure how long the battery<br/>lasts</li> <li>Objective: Test that the camera works<br/>with the RTC</li> <li>Success Criteria: Battery lasts for more</li> <li>Success Criteria: RTC gives correct output</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Battery Longevity<br>Test                                                                                                                                                                                                                                                                                                                      | Camera, IMU, ,<br>RTC Test                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>Methodology: connect pi to a display, run a diagnostic script, and check the battery indicator every 10 minutes . When Pi dies, stop clock</li> <li>Results: Sufficient to meet requirement 2.6</li> <li>Conclusions: Add OLED to accurately measure charge on launch day</li> <li>Add Works With Camera, INIO correctly measures every couple of seconds.</li> <li>Methodology: Check that RTC is installed onto Pi and that the RTC prints onto the photo. Verify that input is properly being read.</li> <li>Results: Able to accurately initialize RAFCO commands to meet requirement 4.2.3.3</li> <li>Conclusions: Code to detect ground hit and leave no possible room for error</li> </ul> | <ul> <li>lasts</li> <li>Success Criteria: Battery lasts for more than 3 hours</li> <li>Methodology: connect pi to a display, run a diagnostic script, and check the battery indicator every 10 minutes . When Pi dies, stop clock</li> <li>Results: Sufficient to meet requirement 2.6</li> <li>Conclusions: Add OLED to accurately</li> </ul> | <ul> <li>with the RTC</li> <li>Success Criteria: RTC gives correct output<br/>and works with camera, IMU correctly<br/>measures every couple of seconds.</li> <li>Methodology: Check that RTC is installed<br/>onto Pi and that the RTC prints onto the<br/>photo. Verify that input is properly being<br/>read.</li> <li>Results: Able to accurately initialize<br/>RAFCO commands to meet requirement<br/>4.2.3.3</li> <li>Conclusions: Code to detect ground hit</li> </ul> |

| Radio/ground |  |
|--------------|--|
| station test |  |

## Camera Deployment

- Objective: Be able to receive signals from ground station to pi
- Success Criteria: The pi receives signals from the ground station and performs the appropriate commands
- Methodology: Send a message from ground station on the radio frequency. Test if Pi can scan message into certain components
- Impact of Results: Knowledge gained from this test will allow us to have a deeper understanding of how to perform the radio commands and how to implement them.

- Objective: Test if the camera deploys properly
- Success Criteria: .Camera deploys and script runs
- Methodology: Connect survey and camera inside of the PILL. Set PILL on level surface and run code.
- Results: Successfully raises camera up to desired height of 2.5" out of payload body
- Conclusions: Fix tolerancing on camera mount to prevent catching



| Physics/Self<br>orientation                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Code test                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>Objective: Test if the PILL ends upright<br/>after landing</li> <li>Success Criteria: PILL is in upright<br/>position, ready to deploy the camera</li> <li>Methodology: Roll PILL on multiple<br/>surfaces, drop PILL on multiple surfaces<br/>and observe if PILL self orients.</li> <li>Results: Able to self-orient properly<br/>under high velocities</li> <li>Conclusions: Sand grooves for bearings<br/>and speak with UCF machine shop to fix<br/>design</li> </ul> | <ul> <li>Objective: Determine if the code for camera functions as it should.</li> <li>Success Criteria: The code is able to run and perform the required actions for the camera</li> <li>Methodology: Run code that turns camera on and verify the images are saved onto SD card after camera takes pictures of surrounding area.</li> <li>Results: Successful, camera overlay works as expected and is able to do perform all commands described in requirement 4.2.2</li> </ul> |

# Ground Test

# PILL Drop Test (a,b,c)

- Objective: Observe and analyze the performance of the experimental payload when deployed from upper body tube.
- Success Criteria: the payload can successfully eject from upper body tube.
- Methodology: troubleshoot software, attach payload to nylon shock cord and to main parachute. Perform ground test on payload.
- Results: Payload is successfully able to deploy

- Objective: Observe the effects and performance of all components of experimental payload when dropped from a high altitude
- Success Criteria: Payload is fully functional upon impact with the ground.
- Methodology: Prepare all electrical and mechanical components of the payload. Attach then drop payload while attach to main parachute. Observe all components of the payload
- Impact of Results: The impact of the results gathered from this experiment is the understanding of the all systems being used and their effects from being under high stress



| Hinge | Seal | Test |
|-------|------|------|
|       | JCu  |      |

# Dry Lubricant Seepage Test

- Objective: To test the quality of the hinge seal
- Success Criteria: No debris let into the inner tube during test procedure and the seal can be broken easily with the linear actuator
- Methodology: Seal the PILL using differently sealing techniques/materials. Blow dirt at the seal directly. Open and inspect debris.
- Results: No charring was observed on the Payload, nor inside of it.

- Objective: To test the application of dry lubricant to prevent seepage onto other components during flight
- Success Criteria: No seepage of dry lubricant anywhere outside of the two outer housings
- Methodology: Weigh and apply appropriate amount of lubricant. Roll the outer rubes for 3 minutes and observe lubricant seepage.
- Results: Dry and Wet lubricants did not seep out of grooves.





# Safety

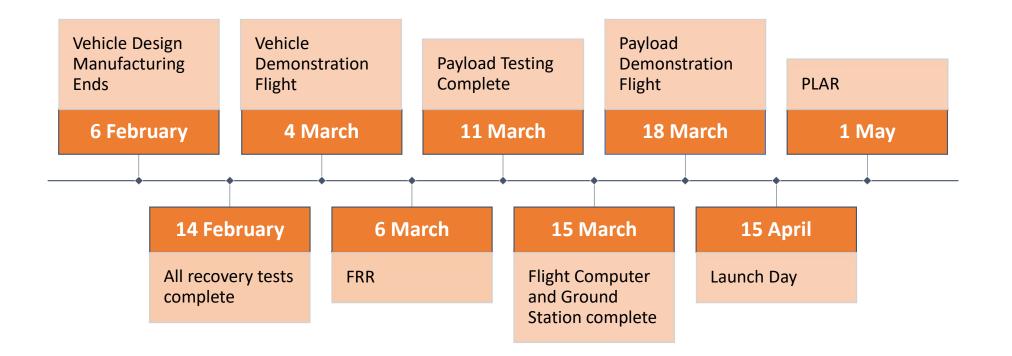


# Safety

### **During Manufacturing**

- Use of Manufacturing Process Plans
- Safety debriefings prior to each session
- Proper storage and use of equipment
- Anonymous forum to voice concerns

### Launch Checklists


- Inventory
- Verifications of proper internal assembly, electronics configuration, and airframe assembly
- Aid in communication between systems prior to integration
- Useful in tracking progress







# Timeline



### **Business**



## Business

| Expected Costs          |              |  |
|-------------------------|--------------|--|
| Aerostructures          | \$ 2,300.53  |  |
| Payload                 | \$ 1,852.25  |  |
| Propulsion              | \$ 1,201.35  |  |
| General                 | \$ 225.00    |  |
| Total Rocket            | \$ 5,579.13  |  |
| Rocket with 25% buffer  | \$ 6,973.92  |  |
| Travel                  | \$ 7,761.92  |  |
| Travel with 25 % Buffer | \$ 9,702.40  |  |
| Total                   | \$ 16,676.32 |  |

| Funding Source      |    |           |  |  |
|---------------------|----|-----------|--|--|
| FSGC / KXR          | \$ | 3,000.00  |  |  |
| SG FAO Bill         | \$ | 3,000.00  |  |  |
| SG CRT Bill         | \$ | 3,000.00  |  |  |
| Student Travel Fees | \$ | 5,100.00  |  |  |
| Total               | \$ | 14,100.00 |  |  |



# Outreach



### Outreach

#### **STEM Engagement**

STEM Day

**STEM Seminar** 

Intro to Engineering

### Social Media

Instagram: ucf\_rocketry

Website: <u>https://kxrucf.com/in</u> <u>dex.html</u>

LinkedIn: <u>https://www.linkedi</u> n.com/company/knightsexperi mentalrocketry/

### Workshops Arduino OpenRocket OpenMotor Python Solidworks Manafacturing





knightsrocketry@gmail.com

