

University of Central Florida 2023-CDR-Presentation

at UC

Project Managers

Nathan Stahl Aerostructures Manager

Alejandra Morales Systems Manager

Emilio Pereira Payloads Manager

Progress on Requirements

10		
10	3	1
15	9	0
10	3	0
2	1	0
3	2	0
0	2	0
	15 10 2 3 0	15 9 10 3 2 1 3 2 0 2

Vehicle Design

- Dual deployment with GPS tracking in the nosecone
- Tail cone to reduce base drag

Rail Exit Velocity	87.6 ft/s
Thrust-to-Weight Ratio	11:1
Maximum Velocity	684 ft/s
Maximum Acceleration	10.1G
Descent Time	72.38s
Highest Kinetic Energy Upon Landing	40.85 ft-lbs
Max Drift	2331'

Vehicle Name	Asclepius
Apogee	5507
Vehicle Length	87"
Expected Lift-off Weight	22.558 lb
Body Tube Outer Diameter	5.1"
Body Tube Inner Diameter	5.00"
Launch Pad Stability	2.74 cal
Launch Pad CoM	51.049" aft of tip
Launch Pad CoP	65.023" aft of tip

- Estimated Weight: 4 lbm
- Overall length of 34"
- Contains fins, motor tube, motor, centering rings, tail cone and motor retainer
- Booster tube made from Carbon Fiber

Booster Section

Fins

- 4 swept trapezoidal fins
- Dimensions
 - Height: 5.5"
 - Root Cord: 7"
 - Tip Cord: 3"
 - Sweep Length: 5"
- Epoxied in
- G10 Fiberglass Plates

Final Motor Choice – Aerotech K1000T

Motor Brand/Designation	AeroTech K1000T
Max/Average Thrust (lb)	1674N/1066N
Total Impulse (lbf-s)	2511.5Ns
Mass Before/After Burn (oz)	2602g/1392.5g
Liftoff Thrust (N)	1105N

Subscale Flight Data

Subscale Flight Data

- Altitude and velocity data recorded on a Missileworks RRC3
- GPS data recorded on a Featherweight GPS Tracker

Featherweight GPS Tracker Data

Missileworks RRC3 Flight Data

Subscale Rocket Launch

Launch Date	December 17, 2022	
Launch location	Spaceport Rocketry Association at Palm Bay, FL	
Anagaa	Expected: 1355	
Apogee	Actual: 1374	

Subscale Recovery Failure

- Main parachute caught on the upper body tube, likely due to inefficient parachute packing
- Altimeters fired all ejection charges and separating the upper body tube from the coupler
- Rocket impacted the ground at 40 ft/sec, only sustaining major damage on one fin
- Re-flight Jan 21 for our own enrichment and to validate updated parachute packing procedures

Subscale Rocket Relaunch

Launch Date	January 21, 2023
Launch location	Spaceport Rocketry Association at Palm Bay, FL
Anagaa	Expected: 1258
Aboßee	Actual: 1171

Subscale Reflight Data

Flight Data Comparison

------ Flight 2

Subscale Relaunch

- Fins were repaired and reinforced with tip-to-tip fiberglass
- Flight data shows main parachute deploying and slowing • the rocket to 18 ft/sec for landing
- Lower apogee than flight 1, due to increased weight from fiberglass reinforcement

separated from recovery coupler

Lower left: Expected vs. Recorded flight data

Right: Damage resulting from recovery failure

Recovery

Recovery

- Estimated weight: 3.81 lb
- Coupler Length: 12"
- Switch band: 2"
- Main chute located at top of upper tube
- Drogue chute in aft bay
- Shear pins attached to bottom of coupler and nose cone shoulder

Slide 16

change engineering drawing Aleksandr Zhuchkan, 2023-01-08T21:46:36.255 AZ0

AZ1

engineering drawing Aleksandr Zhuchkan, 2023-01-08T23:13:18.671

Recovery

- •Fiberglass coupler
- Fiberglass Bulkheads
- •Main and Redundant altimeter
- •3D-Printed electronics mount and support structures
- Free floating charges

JA0 On this slide, simply state the main idea. Main Idea: Flight diagram with time intervals taken from the Vertical Motion vs TIme graph plotted by OpenRocket. Jericho Antoine, 2023-02-01T14:19:05.042

Primary Altimeter

Redundant Altimeter

- RRC3 Sport
 - 7.4V LiPo Battery
 - Large success with RRC2+ in past projects
 - Cohesive Flight Data
 - Easily Programmable

- StratoLoggerCF
 - 7.4V LiPo Battery
 - Redundant as it is new to us
 - Easily Programmable
 - Better for Flight Data
 - Battery, temp, velocity, altitude, etc.

Drogue Parachute

• 12" Standard Parachute

- Rocketman
- CD: .97
- Materials: 1.1 oz
- Weight: 1 oz
- Packing Volume: 5.3"^3

Main Parachute

- 84" Standard Parachute
 - Rocketman
 - CD: .97
 - Materials: 1.1 oz
 - Weight: 8 oz
 - Packing Volume: 45.94"^3

Slide 20

- AZ0 update to new chutes Aleksandr Zhuchkan, 2023-01-08T22:25:45.625
- JA1 Mention that the snatch force for main is 561.977 lbf at 100 ft/s Jericho Antoine, 2023-02-01T17:42:31.403

Heat Shielding

Shock Cord

- Nomex Blankets
- Heat-Resistant Epoxy Coating
- Drogue Shock Cord
 - Kevlar
 - 360 inches
- Main Shock Cord
 - Kevlar
 - 300 inches
- PILL Shock Cord
 - Kevlar
 - 48 inches
- Harness/Airframe Interfaces

Wiring Diagram

Ejection Charges

- Ejection Charge Type
 - FFFFg Black Powder

• Ejection Charge Locations

- Forward AEB Bulkhead
- Aft AEB Bulkhead
- Drogue
 - 1.5g
- Main
 - 3.9g

Payload Deployment

- Payload (PILL) is attached to main shock cord by an extra 4ft
- Main parachute deploys
- Payload is pulled out with the main parachute
- Payload remains attached to the shock cord
- Payload and rocket reach touchdown
- Camera Exits Payload housing

Slide 23

AZ0

add an image possibly Aleksandr Zhuchkan, 2023-01-09T05:20:00.861

Test Schedules

Test	Description	System Under Test	Status
Altimeter and Battery Drain Test	Altimeters are hooked up their respective batteries and are ran until the battery is dead to test the endurance of the system	RRC3 and Stratologger altimeters, 7.4V LiPo batteries	Incomplete
Parachute Drop Test	Both drogue and main parachutes are attached to a weight and dropped from a height to test parachute functionality	Drogue and main parachute	Incomplete
Altimeter Ejection Vacuum Test	Altimeters are tested for reliability and pass if they consistently ignite both ejection charges at the appropriate time	RRC3 and Stratologger altimeters	Incomplete
Black Powder Ejection Test	Black powder ejection systems are tested to fullfill the appropriate separation between stages	Drogue and main Parachute ejection system	Complete

Recovery Ground Test

Objective

JA1

- To ensure recovery components are functioning and determine the amount of black powder needed for appropriate body tube separation
- Success Criteria
 - Separation must occur while maintaining safety standards
- Methodology
 - Pour black powder into floating point charge, Connect ematch without battery to charge well, connect battery to ematch to light.

Slide 25

- JA0 Objective Main Idea: Define the word appropriate for body tube separation. Jericho Antoine, 2023-02-01T17:56:40.031
- JA1 Success Criteria Main Idea: In order for our test to be deemed successful, an appropriate body tube separation must occur whilst following all safety protocols listed by our safety officer. Jericho Antoine, 2023-02-01T18:00:05.930

Drogue Results

Main Results

- Test 1
 - Incomplete due to e-match not wired correctly
- Test 2
 - Incomplete due to insufficient black powder for separation
- Test 3
 - Adequate separation with 0.5g. Decided on 0.55g to ensure separation

• Test 1

 Adequate separation with 0.5g. Decided on 0.55g to ensure separation

Payload Design

Payloads Section

- Overall Length: 58"
- Contains the Payload Integrated Launch Log (PILL), COTS GPS, and student-built flight computer
- Carbon fiber payload tube
- Fiberglass Nose Cone

Payload Integrated Launch Log (P.I.L.L)

- PILL Mission Objectives:
 - House and deploy a camera capable of rotating 360° about the z-axis, whilst selforienting itself parallel to the horizon
- Sub-system Breakdown
 - Experiments
 - Telemetry
 - Ground Station

PILL Dimensions and Weight

- The PILL has a length of 10 inches and an OD of 4.5 inches
- The PILL is expected to weigh 3.8 pounds, with a maximum allowance of 5.0 pounds as an overhead.

PILL Components

- Raspberry Pi Model 4B
- Linear Elevator Mechanism
- 1:2 Geared Servo Motor
- Continuous Servo
- Adafruit PiRTC Real-time Clock
- PETG Electronics Sled
- Polycarbonate Outer Case "PILL"
- SDR and Radio dongle
- Mini Short Walkie-talkie Antenna
- BNO055 IMU

PILL Circuit Diagram

Self-Orientation

- Inner and outer sections are separated by ball bearing grooves.
- Inner section rotates independently from the outer sections
- Weight of components and low center of gravity causes camera to align upright with gravity

Image Processing

- The PILL will process images taken with the camera using OpenCV
- All code will be written in Python and run on the Raspberry Pi
- The system will be capable of executing all possible RAFCO commands

Epoxy Coating

- Made at UCF Nano Technology Research Lab
- Heat resistant
- Impact resistant
- Optically clear for redundancy
- Made with polycarbonate
- Reinforced with
 - Rayon and/or
 - Fiberglass

Payload Iterations: COTS Linear Actuator

- Original PILL Design
- Hatch Above Camera
- Linear Actuator raises camera outside of PILL
- Cons:
 - Spacing Issues
 - Height Relative to space too low

Payload Iterations: Spring Lock

- Similar function to a springloaded toilet paper holder
- Locked down by a servo with a pin
- Servo removes pin upon landing
- Camera 'ejects' out of hatch
- Cons:
 - Unpredictable, little to no control

Payload Iterations: Boom Arm

- Inspired by firetruck boom arms
- Camera rotation possibly mitigated
- Cons:
 - Range of motion limited by hatch size
 - Took up large amount of space

Payload Iterations: Linear Elevator

- A dual lead screw-based lift
- Takes all strengths of COTS linear actuator
- More control, improved height and spacing

Decision Matrix

		RATINGS			
Criterion	Weight	COTS Linear Actuator	Spring Lock	Boom Arm	Linear Elevator
Y-axis Orientation	2	1	1	5	1
Reliability	5	5	1	5	5
Spacing	7	1	5	1	3
Distortion	7	5	5	5	5
Height	7	3	5	4	4
Manufacturability	3	5	2	4	4
Total		105	118	117	123

Major Design Flaws – Missing Axis

- Due to the implementation of the Linear Elevator, the camera can no longer self-orient about the y-axis due to the static hatch
- Because of the relatively flat terrain of the launch site, a single stabilization axis was deemed sufficient

Subscale Flight Computer

- PLA Structure
- SD-Card Data Logging
- Test Component efficacy
- Run Cam Footage
- Develop and Test Software

Avionics Bay

- Located in nose cone
- Threaded rod holding in metal nose cone tip
 - Possible source of interference
- PETG filament along threaded rod
- Triple Sled Design
 - 1. Featherweight GPS
 - 2. Flight computer
 - 3. LiPo Batteries
- Secondary camera located in shoulder

Flight Computer Components

- Custom PCB
- ESP-32
- BNO085
- BMP 280
- SD Card Reader
- 512MB Flash Storage
- Adafruit Ultimate GPS
- Adafruit LoRa Transceiver
- 18650 LiPo Batteries

GPS Tracking

Featherweight GPS

- Independent of flight computer
- Low power draw
- Communicate up to 164,042 feet
- Connects to phone
- Advanced flight data

Adafruit Ultimate GPS

- Redundant GPS
- Compact
- Integrated with GPS
- High position/velocity accuracy
- Interfaced with custom ground station

Ground Station

- Primary Featherweight comes with its own ground station
 - 164,042-foot range
- Redundant LoRa Transceiver
 - Protective Case
 - Directional Antenna
 - Redundant Power supply
 - ESP-32
 - Laptop
 - About 2km range

Ground Station Flowchart

Secondary Experiments

Run Cam Split

- Located in nose cone shoulder
- Window drilled through shoulder and upper tube
- 165° FOV
- Requires an SD card and battery
- Can function independent of all other experiments/avionics

Safety

Risk Analysis Methodology

	Fatal – A	Critcal - B	Modera - C	Minimal - DF
Frequent – 5	5A	5B	5C	5D
Likely – 4	4A	4B	4C	4D
Occasional – 3	3A	3B	3C	3D
Rarely – 2	2A	2B	2C	2D
Improbable - 1	1A	1B	1C	1D

Launch Operations and Procedures

Safety and Environment

- Checklists
 - Mitigating risk by organizing conduct
 - Ensuring all components are properly assembled
 - Ensuring ability to proceed in absence of members
- Troubleshooting
 - Prioritizing prevention of injury
 - Avoid confusion and guarantee best case scenario should failure modes persist

- Personnel and Environment
 - Recognition of Hazards
 - Risk mitigations
- Materials Safety
 - Collection of Safety Data Sheets
 - Creation of product use guidelines

Timeline

Business

Business

Expected Costs				
Aerostructures	\$ 2,300.53			
Payload	\$ 1,852.25			
Propulsion	\$ 1,201.35			
General	\$ 225.00			
Total Rocket	\$ 5,579.13			
Rocket with 25% buffer	\$ 6,973.92			
Travel	\$ 7,761.92			
Travel with 25 % Buffer	\$ 9,702.40			
Total	\$ 16,676.32			

Funding Source				
FSGC / KXR	\$	3,000.00		
SG FAO Bill	\$	3,000.00		
SG CRT Bill	\$	3,000.00		
Blue Origin	\$	3,000.00		
Daytona 500	\$	2,000.00		
Student Travel Fees	\$	5,100.00		
Total	\$	19,100.00		

Outreach

Outreach

STEM Engagement

Small Sat

Lockheed Martin Airshow

National Society of Black Engineers

STEM Day

UCF Club Fair

STEM Seminar

Intro to Engineering

Social Media

Instagram: ucf_rocketry

Website: https://kxrucf.com/index.html

LinkedIn: https://www.linkedin.com/co mpany/knightsexperimentalro cketry/ Workshops

Arduino

Ansys

SolidWorks

OpenRocket

OpenMotor

Python

Composites

Manafacturing

knightsrocketry@gmail.com

