Vehicle Level Preliminary Design Review

Spaceport America Cup 2024

IREC 30k SRAD Hybrid Engine, Experimental Payloads, and Airframe

10/30/23

Knights Experimental Rocketry UCF

Agenda

- 1. Purpose of PDR
- 2. Stakeholder Needs Identification
 - IREC Team Members
 - KXR Executive Board
 - Experimental Rocket Sounding Association
- 3. Concept Definition
 - Mission
 - Spaceport America Cup Competition
- 4. Element Architectures
- 5. System Architectures
- 6. Questions

Purpose of PDR

Reiterate and clarify stakeholder needs

Present Design Solutions for potential redirection

Receive feedback on progress and where to improve

Establish a baseline for our architecture

Ensure architecture is feasible within given requirements/constraints

Stakeholders

Our Team

Students striving to push themselves to prepare for industry through hands on experience.

ESRA

The platform to launch 30k rockets, competition, rules, and requirements.

KXR Executive Board

Provides students the opportunity to achieve their goals through funding.

Our Team - Demographics

ESRA – Deliverables

Deliverables			
ltem	Deadline		
1st Interim Report	12/15/2023		
2nd Interim Report	2/16/2024		
3rd Interim Report	4/19/2024		
Flight Readiness Review	5/10/2024		
Technical Report	5/10/2024		
Poster and Podium Materials	5/10/2024		
School Participation Letter	5/10/2024		
Final Launch Day	6/22/2024		

ESRA – Spaceport Cup Scoring Summary

Deliverable	Category	Sub-Categories	Pts. Available	
	Entry Form	N/A	15	
Early Deliverables	1st Interim Report	N/A	15	
(60 Points)	2nd Interim Report	N/A	15	
	3rd Interim Report	N/A	15	
	Completeness	N/A	20	
		Style	20	
	Style and Format	Mechanics	10	
Technical Report		Format	10	
(200 Points)		Depth of Analysis	50	
(200101110)	Analysis	Assumptions and Sensitivity Analysis	30	
		Verification and Validation tests	40	
		Use of Charts and Figures	20	
		Team Design Vision, Goals and Systems		
	Design Quality &	Engineering	50	
Design	Decisions	SRAD components	50	
		Team Knowledge	20	
(240 Pointe)		Design Quality and Robustness	30	
(240 Points)	Puild Quality	Manufacturing and Construction Methods	30	
	Bullu Quality	Consistent Design	30	
		Compliance with DTEG	30	
Flight	Apogee Performance	See Equation	350	
Performance	Recovery			
(500 Points)	Performance	N/A	150	
Total			1000	

2.7.1.7 BONUSES FOR CUBESAT BASED PAYLOADS

Teams whose payload(s) qualify for the form factor exemption described in Section 2.3.5.2 of this document, yet still adopt the CubeSat standard form factor, will be awarded 50 bonus points in addition to their total earned score. This promotes ESRA and SDL's encouragement that teams adopt the CubeSat standard for their payload(s) whenever possible – either as the payload structure itself, or as an adapter which the payload is mated to prior to the combined assembly's integration with the launch vehicle (such an adapter could be included in the official payload mass).

2.7.1.8 BONUSES FOR EFFICIENT LAUNCH PREPARATIONS

Teams whose preparedness, efficient operations, and hassle-free design permit their being launched in a timely manner will be awarded bonus points in addition to their total earned score according to the following tiered system. Launch readiness is declared when competition officials managing Launch Control receive the team's completed Flight Card. No bonus points will be awarded for launch attempts ending in catastrophic failures (CATO).

- 50 bonus points will be awarded to teams declared launch ready by the end of the designated field preparation day and flown by the end of the first launch day. They remain eligible to receive these points until the end of the first launch day, or until their first launch attempt ends in a scrub at which point the team is no longer eligible for the 50 point bonus, but may still achieve bonus points awarded for teams declared launch ready on the first launch day.
- 25 bonus points will be awarded to teams declared launch ready and flown during the second launch day. They remain eligible to receive these points until the end of the second launch day. or until their first launch attempt ending in a scrub at which point the team may attempt to regain eligibility by attempting a return to launch readiness by the end of the day. Otherwise, the team is no longer eligible for bonus points.
- 0 bonus points will be awarded to teams declared launch ready and flown during the third launch day.

$$Points = 350 - \left(\frac{350}{0.3 \times Apogee_{Target}}\right) \times \left|Apogee_{Target} - Apogee_{Actual}\right|$$

where Apogee Target may equal either 10,000 ft AGL or 30,000 ft AGL

ESRA – SDL Payload Challenge Scoring

Awards:

- 1st Place Payload Award: \$1000
- 2nd Place Payload Award: \$750
- 3rd Place Payload Award: \$500
- SDL Technology Relevance Award
- Honorable mentions as warranted (judges discretion)

Judging Criteria (1000 points possible):

- Scientific or Technical Objective(s) (400 points)
 - o How relevant and well-designed is your scientific or technical objective?
- Payload Construction and Overall Professionalism (250 points)
 - o Includes make/buy decisions, craftsmanship, material usage, poster, handouts, reports, etc.
- Readiness / Turnkey Operation (50 points)
 - Will the payload interfere with launch operations? Will the payload operate after hours of launch preparation, rail time, heat, waiting for other launches, etc?
- Execution of Objective(s) (300 points)
 - Judges should be informed of results by Saturday at noon or a zero in this category will be assessed.
 - How well did it accomplish the objective(s)?
 - Note that rocket failure results in 150 points (half credit don't know if payload would have worked or not)

SDL Technology Relevance Award

- This is a separate award and has no impact on the overall SDL payload challenge.
- This provides an opportunity for students to focus on and integrate technologies relevant to SDL's mission into their payload.
- 2024 technology areas: Robotics, Artificial Intelligence, and Infrared

IREC Team: The Mission

- 1. Launch a rocket carrying an Experimental Payload to 30,000 feet AGL.
- 2. Score points through successful flight, recovery, and payload deploy.
- 3. Meet industry professionals and student teams from across the world at Spaceport in Las Cruces, NM.

IREC Vehicle Team Decomposition

IREC Vehicle Architecture

Apogee: 28581 ft Max. velocity: 1600 ft/s (Mach 1.45) Max. acceleration: 365 ft/s^e

www.kxrucf.com | 12760 PEGASUS DR, BLDG 40 ROOM 307, ORLANDO, FL 32816

IREC Vehicle Requirements and TPMs

Requirement	Verification Method 🔽
The Vehicle shall launch to [30,000] feet.	Demonstration
The Vehicle shall have a weight of [150] lbs.	Inspection
The Vehicle shall be successfully recovered.	Demonstration
The Vehicle shall contain separate avionics, payload, aerostructures, and propulsion systems.	Inspection
The Vehicle shall interface between external ground support equipment (GSE).	Inspection
The Vehicle shall withstand [120 degree farenheight] for [3 hours] at a time.	Demonstration
The Vehicle shall be reusable.	Demonstration
The Vehicle shall be prepared at the launch field within [2 hours].	Demonstration
The Vehicle shall be launched using hybrid propulsion.	Demonstration
The Vehicle shall be transported using vehicles.	Demonstration
The Vehicle shall be verified through test launch by [April 11th, 2024].	Demonstration
The Vehicle shall be designed by the [End of November 2023].	Inspection
The Vehicle shall exceed a velocity off the rail of [120] ft/s.	Test
The Vehicle shall launch off a [30-foot] rail.	Demonstration
The Vehicle shall be designed, manufactured, and verified within a budget of [\$15,800].	Demonstration
The Vehicle shall have a maximum height of 18 feet.	Inspection

Measure 💌	TPM Value 💌	Units 💌	Verification 💌
Length	[17]	ft	Inspection
Weight	[150]	lbs	Inspection
Maximum Speed	[1,500]	ft/s	Test
Apogee AGL	[28,000-30,000]	ft	Test
Engine Class	O-Class	N/A	Test
Thrust-to-Weight	[12.24:1]	N/A	Test
Outer Diameter	[6.22]	in	Inspection

IREC Vehicle CONOPs

IREC Vehicle Interface Diagram

IREC Vehicle Cost

The Vehicle has a budget of \$15,800 that can break down into each System:

Propulsion: \$8,300 Aerostructures: \$5,500 Payloads: \$2,000

5-20% from each system will be used as a buffer for overhead or emergency costs.

www.kxrucf.com | 12760 PEGASUS DR, BLDG 40 ROOM 307, ORLANDO, FL 32816

IREC Vehicle Schedule – 9 Month Process

PI 1: August – Mid-December (5.5 months)

- System Requirements Reviews (Systems and Vehicle)
- Preliminary Design Reviews (Systems and Vehicle) (October 30th November 9th)
- Design Solution Development Phase
- Critical Design Reviews (Systems and Vehicle) (November 27th)
- ERFs for long lead time items are created and approved.

PI 2: Mid-December – End-of-February (2.5 months including Winter Break)

- Finish all procurement.
- Finish initial and component-level simulation models for verification.
- Begin and Finish Manufacturing of all vehicle components necessary to proceed to testing.
- Book plane tickets and housing.

IREC Vehicle Schedule – Continued

PI 3: March – Mid-June (3.5 months)

- All assembly, testing, fill, launch, safety, recovery, etc. procedures shall be officially completed and released, pending changes after collecting testing data.
- Testing campaign, verification across entire vehicle
- Flight Readiness Review
- Technical Report submission, Poster creation, and paper deliverables are finalized.
- Itinerary is established and finalized for travel.

PI 4: Mid-June – End-of-July

- Attend competition and complete competition mission sequence.
- Post-competition debrief.
- Prepare documentation for future project cycle.

IREC Vehicle Risks

Possible Failure Modes:

- The vehicle does not reach desired altitude
- The vehicles stability fin system breaks
- The GSE does not ignite the propulsion system
- The vehicle loses connection to the ground station during fill
- The vehicle does not separate at main deployment
- The vehicle does not separate at drogue deployment

IREC Vehicle Verification Plans

- Dry Fit Demonstration
 - Verify through demonstration that all interfacing components within the vehicle fit together and can be assembled with ease.
- Full Vehicle Verification Testing
 - Propulsion System Verification Testing
 - Payloads System Verification Testing
 - Aerostructures Verification Testing
- Test Launch
 - Verify and validate by demonstration that the vehicle and fulfills all functional requirements and mission sequence

IREC's Interpretation of LTI Team Decomp

Restructured within IREC strictly for requirements and interface writing

 \bullet

 Please refer to LTI's own Team Breakdown if you are on their team!!

GSE – Test Configuration

GSE – Launch Configuration

GSE – Flight Configuration

ECDH (Avionics and PCB²)– Flight Config

Aero-Structures System Preliminary Design Review

Spaceport America Cup 2024 Project Helios 11/14/23

Agenda

- 1. General Aero-Structures Overview
- 2. Dynamics
- 3. Structures
- 4. Recovery
- 5. Manufacturing

Disclaimer: The question section is at the end of every sub-system section. Please hold questions until the designated question slide.

Aero-Structures Architecture

Target Apogee: 30,000ft Max Speed :1700ft/s Length :17 ft OD: 6.22 inches Max Dynamic Pressure: 15.5 PSI Dry Mass: 98 lbs

Aero-Structures Requirements

Requirement	Verification Method
The Aero-Structures System shall withstand a load of [12] G's.	Analysis
The Aero-Structures System shall have a Weight of [30] lbs.	Inspection
The Aero-Structures System shall deploy the Payload Experiment System during Main Deployment Event.	Inspection
The Aero-Structures System shall house the Avionics System.	Inspection
The Aero-Structures System shall house the Propulsion System	Inspection
The Aero-Structures System shall consist of Recovery and Structures Sub-Systems.	Inspection
The Aero-Structures System shall utilize non-functional Manufacturing and Dynamics Teams.	Inspection
The Aero-Structures System shall house all internal components.	Inspection
The Aero-Structures system shall have a minimum stability of [1.5] Calibers from launch and until apogee approach.	Analysis
The Aero-Structures System shall fully be designed by the [first week of December 2023].	Inspection
The Aero-Structures System shall fully be procured by the [last week of January 2024].	Inspection
The Aero-Structures System shall fully be manufactured by the [last week of February 2024].	Inspection
The Aero-Structures System shall fully be tested by the [last week of March 2024].	Inspection
The Aero-Structures System shall be designed to withstand their respective loads within a minimum Safety Factor of [2].	Analysis
The Aero-Structures System shall be completely resuable.	Test
The Aero-Structures System shall successfully launch off the launch rail at an azimuth of [6] degrees.	Test
The Aero-Structures System shall be designed, manufactured, verified, and launched within a budget [\$5,500].	Inspection
The Aero-Structures System shall have a total length of [17.083] ft.	Inspection
The Aero-Structures System shall be adequately vented throughout flight.	Inspection

Aero-Structures Organization Chart

Aero-Structures CONOPS

Aero-Structures Interface Diagram

Aero-Structures Verification Plans

Planned Tests	Details
Carbon Fiber Composite Testing	Compressive, Tensile, Bending, and Bolt Tear Out
FEA	Bulkheads, Tubes, Nose Cone, Tail Cone, Fins, and Fin Brackets
	Iteration of simulation with improvents to full
Full Rocket Fluent Sim	rocket CAD assembly
Mold Testing	Nose Cone, Tail Cone, Fin, etc
Manufacturing Test Article	6-8 inch section of body tube
Manaraetannig reschindere	o Binchiscedon or body tabe
Parachute CD Testing	Done through UCF or neighbor universities.
Inspection of all Componets	Damage, sizing, weight, etc
Airframe Dry Fit	Full Dry Dress Assembly.
Recovery Ground Test	Rocket with ballast weight tested.
Launch	Full vehicle assembly, loading of propellants, and fire sequence
Launch	ni e sequence.

Aero-Structures Cost

Total Budget: \$5500

Structures: \$2750

Manufacturing: \$1000

Recovery: \$1250

\$500 Buffer

\$1,000 \$1,250 \$500 \$2,750

IREC Aero-Structures Budget

Aero-Structures Risks

Risks	Mitigation Strategies
Delay in materials arriving.	Order materials with long lead times earlier.
,	
Integration Issues between Sub-	Implement ICD to track all mission critical interfaces
Systems and Systems	between Aero-Structures.
	Create test articles and subscale models of full-scale
Manufacturing Setbacks	components.
Rocket CATO from structural	Perform rigorous hand calcs, simulations, and coupon
inadequacies	testing, as well as designing with 2 times safety factor.

The Dynamics Team is responsible for designing the geometries of Nosecone, Tailcone, Fins, and Antenna Shrouds. This includes determining the expected Aerodynamic loads that will be experienced by the Airframe.

•	•	
Dynamics Requirements

Requirement	Verification Method 🔽
The Dynamics Team shall determine the maximum stresses acting on the rocket from aerodynamic loading to design around.	Analysis
The Dynamics Team shall verify drag coefficient for Aero-Structures System components through a variety of testing and CFD methods.	Analysis
The Dynamics Team shall verify sufficient stability throughout flight through aerodynamics analysis prior to testing.	Analysis
The Dynamics Team shall optimize the entire rocket to reduce Maximum Drag.	Analysis
Requirement	Verification Method 🝸
The Nose Cone shall have a maximum Drag Coefficient of [] during flight.	Analysis
The Shroud shall minimize the drag contribution of the external antenna shrouds	Analysis
The Tail Cone shall have a maximum Drag Coefficient of [] during flight.	Analysis
The Tail Cone shall minimize drag experienced during flight.	Analysis
The Rail Guides shall induce a maximum Drag of [] Ibs during flight.	Analysis
The Fins shall retain an airfoiled cross-sectional geometry.	Inspection
The Fins shall have a maximum Lift Coefficient of [] during flight.	Analysis
The Fins shall have a maximum Drag Coefficient of [] during flight.	Analysis
The Fins shall provide stability throughout flight.	Demonstration

Dynamics TPMs

Measure	TPM Value	Units	Verification Method
Maximum Coefficient of Drag	[0.7]	-	Analysis
Maximum Total Drag Force	[337]	lbf	Analysis, Hand Calculation
Maximum Acceleration	[370]	ft/s^2	Analysis
Maximum Moment	[7560]	lb*in	Analysis
Maximum Dynamic Pressure	[15.6]	psi	Analysis
Max Pitch Moment	[7560]	lb*in	Analysis
Max Pitch Rate	[0.081]	rad/s	Analysis
Max Yaw Rate	[-0.016]	rad/s	Analysis
Max Roll Rate	[1.8*10^-7]	rad/s	Analysis

Dynamics Risks

Risks	Mitigation Methods
Aerodynamic Loads are not calculated correctly, leading to failure during flight.	Ensure Aerodynamic Loads are calculated correctly through repeated verification.
Selected designs are not feasible.	Look for real-world examples from other team reports that have successfully launched for implementing new designs.
Selected designs are not able to integrate with other Sub-Systems.	Ensure constant communication between the other Sub-Systems.

Worst Case - "Rough (19.7 mil)"

Best Case - "Aircraft Sheet-metal (0.079 mil)"

Expected Case - "Smooth Paint (0.787 mil)"

Stability Margin

Stability Margin – Expected Case

Aero Loads

Max Q[Dynamic	Refrence Area		Normal Force on	Normal Force	Distributed load	Distributed load	Distance from NC for	Distance from NC	Section
Pressure] (Psi)	(in^2)	AoA (radians)	Nose Cone(lbf)	on Fins(lbf)	W1(lb/in)	W2(lb/in)	M1 (in)	from M2 (in)	Modulus(in^3)
15.56178729	30.39556944	0.104719755	99.06685421	243.7044614	0.468547479	3.745779337	211.4339712	113.9389167	2.896094428
M1 Max Moment	M2 Max Moment	Lateral Shear	Lateral Shear (V2)	Max Stression		Compressive	Compressive Stress to		
(lbin)	(Ibin)	(V1) (lbf)	(lbf)	Body (psi)	Drag Force (lb)	Stress (psi)	Mass Inertia (psi)	Total Stress (psi)	Safety Factor
7563.948025	7563.948025	52.21210629	-243.7044614	2611.775346	337.4579929	11.10220993	599.433185	3222.310741	28.40160598

Full Rocket Sim

Apogee:	28250 ft	
Max. velocity:	1612 ft/s	(Mach 1.46)
Max. acceleration:	370 ft/s²	

- Design Considerations: Ogive, *LD (Von-Karman) and *LV Haack Series, *X¹/₂ and X³/₄ Power Series
- Honors Thesis by Chad O' Brien (supervised by principal Research Engineer Dr. David Lineberry)
- Gives insight on slenderness ratio and Haack Series drag comparisons

F. Axial Force from Pressure - Raw Data

Table 4: Axial Force from Dynamic Pressure																		
	LD-HAACK							LV-HAACK										
		SF_0.5			SF_1.0		SF 2.0				SF_0.5			SF 1.0		SF_2.0		
Mach/File	F3	F4	F5	F3	F4	F5	F3	F4	F5	F3	F4	F5	F3	F4	F5	F3	F4	F5
0.3	0.0025	0.0015	0.0011	0.0085	0.0055	0.0039	0.0340	0.0219	0.0156	0.0029	0.0018	0.0013	0.0102	0.0066	0.0048	0.0417	0.0273	0.0196
0.5	0.0074	0.0045	0.0031	0.0261	0.0166	0.0117	0.1056	0.0677	0.0479	0.0087	0.0054	0.0038	0.0313	0.0203	0.0144	0.1296	0.0845	0.0603
0.7	0.0176	0.0108	0.0074	0.0643	0.0406	0.0285	0.2667	0.1696	0.1192	0.0207	0.0130	0.0091	0.0771	0.0498	0.0353	0.3250	0.2108	0.1495
0.9	0.0470	0.0290	0.0199	0.1894	0.1184	0.0817	0.8197	0.5114	0.3515	0.0543	0.0343	0.0239	0.2191	0.1408	0.0987	0.9485	0.6093	0.4257
0.92	0.0534	0.0330	0.0226	0.2189	0.1366	0.0939	0.9529	0.5926	0.4055	0.0615	0.0389	0.0271	0.2513	0.1612	0.1126	1.0912	0.6991	0.4866
0.94	0.0613	0.0379	0.0259	0.2556	0.1592	0.1089	1.1185	0.6934	0.4719	0.0703	0.0445	0.0308	0.2910	0.1863	0.1296	1.2671	0.8093	0.5607
0.96	0.0710	0.0439	0.0299	0.3011	0.1871	0.1273	1.3230	0.8177	0.5532	0.0810	0.0512	0.0354	0.3399	0.2169	0.1502	1.4832	0.9439	0.6504
0.98	0.0828	0.0511	0.0347	0.3563	0.2209	0.1496	1.5685	0.9672	0.6506	0.0939	0.0593	0.0408	0.3991	0.2539	0.1748	1.7429	1.1052	0.7570
1	0.0965	0.0596	0.0403	0.4203	0.2603	0.1754	1.8484	1.1382	0.7620	0.1089	0.0687	0.0471	0.4677	0.2968	0.2033	2.0403	1.2901	0.8788
1.02	0.1114	0.0690	0.0466	0.4890	0.3030	0.2037	2.1431	1.3198	0.8814	0.1253	0.0790	0.0540	0.5419	0.3436	0.2345	2.3567	1.4879	1.0098
1.04	0.1264	0.0786	0.0531	0.5565	0.3456	0.2324	2.4255	1.4958	0.9994	0.1417	0.0896	0.0613	0.6156	0.3905	0.2663	2.6654	1.6822	1.1404
1.06	0.1403	0.0876	0.0594	0.6175	0.3845	0.2594	2.6735	1.6519	1.1069	0.1572	0.0997	0.0683	0.6836	0.4342	0.2965	2.9441	1.8584	1.2612
1.08	0.1528	0.0958	0.0652	0.6702	0.4182	0.2831	2.8814	1.7825	1.1990	0.1715	0.1090	0.0749	0.7441	0.4728	0.3235	3.1860	2.0101	1.3670
1.1	0.1641	0.1030	0.0704	0.7160	0.4468	0.3035	3.0571	1.8909	1.2760	0.1845	0.1174	0.0808	0.7980	0.5064	0.3471	3.3971	2.1397	1.4576
1.3	0.2526	0.1570	0.1073	1.0578	0.6512	0.4420	4.3526	2.6626	1.7996	0.2903	0.1818	0.1247	1.2174	0.7565	0.5154	5.0206	3.0999	2.1026
1.5	0.3343	0.2072	0.1415	1.3800	0.8486	0.5761	5.6179	3.4388	2.3277	0.3891	0.2425	0.1660	1.6127	0.9976	0.6787	6.5840	4.0539	2.7489
1.7	0.4208	0.2609	0.1784	1.7255	1.0627	0.7230	6.9900	4.2901	2.9115	0.4940	0.3075	0.2105	2.0350	1.2587	0.8571	8.2663	5.0945	3.4604

In Table 4, the listed values are directly collected from the FMSUMparse.sh shell routine showing in Figure 29. These were manipulated into non-dimensional calculations and plotted in the results section of this report. The values listed are in units of Newtons (N), the "F" is the slenderness ratio, and the "SF" is the radial scaling factor.

G. Axial Force from Viscous Effects – Raw Data

	Table 5: Viscous Force																	
	LD-HAACK							LV-HAACK										
		SF_0.5			SF_1.0			SF_2.0			SF_0.5			SF_1.0		SF 2.0		
Mach/File	F3	F4	F5	F3	F4	F5	F3	F4	F5	F3	F4	F5	F3	F4	F5	F3	F4	F5
0.3	0.0115	0.0143	0.0170	0.0400	0.0497	0.0590	0.1398	0.1737	0.2064	0.0124	0.0153	0.0182	0.0430	0.0533	0.0632	0.1503	0.1864	0.2213
0.5	0.0269	0.0335	0.0399	0.0945	0.1178	0.1403	0.3332	0.4156	0.4954	0.0290	0.0360	0.0428	0.1015	0.1263	0.1504	0.3582	0.4462	0.5313
0.7	0.0455	0.0569	0.0680	0.1611	0.2017	0.2410	0.5729	0.7175	0.8575	0.0488	0.0610	0.0728	0.1730	0.2163	0.2583	0.6154	0.7700	0.9196
0.9	0.0645	0.0815	0.0980	0.2324	0.2935	0.3523	0.8361	1.0537	1.2637	0.0694	0.0875	0.1051	0.2496	0.3146	0.3775	0.8979	1.1304	1.3551
0.92	0.0664	0.0839	0.1010	0.2391	0.3024	0.3635	0.8618	1.0875	1.3052	0.0714	0.0901	0.1083	0.2570	0.3244	0.3895	0.9257	1.1668	1.3997
0.94	0.0682	0.0863	0.1039	0.2457	0.3112	0.3745	0.8868	1.1210	1.3465	0.0734	0.0926	0.1114	0.2643	0.3339	0.4014	0.9529	1.2029	1.4441
0.96	0.0700	0.0887	0.1067	0.2522	0.3198	0.3852	0.9108	1.1538	1.3875	0.0754	0.0952	0.1145	0.2713	0.3433	0.4131	0.9793	1.2384	1.4882
0.98	0.0718	0.0910	0.1096	0.2585	0.3283	0.3958	0.9338	1.1859	1.4279	0.0773	0.0977	0.1176	0.2781	0.3525	0.4246	1.0047	1.2731	1.5318
1	0.0735	0.0933	0.1125	0.2645	0.3365	0.4062	0.9560	1.2171	1.4677	0.0791	0.1002	0.1207	0.2847	0.3614	0.4359	1.0290	1.3070	1.5747
1.02	0.0752	0.0956	0.1153	0.2705	0.3447	0.4165	0.9777	1.2476	1.5069	0.0809	0.1026	0.1237	0.2911	0.3702	0.4470	1.0527	1.3402	1.6170
1.04	0.0768	0.0979	0.1182	0.2764	0.3528	0.4268	0.9993	1.2779	1.5457	0.0827	0.1050	0.1267	0.2974	0.3789	0.4580	1.0761	1.3730	1.6590
1.06	0.0785	0.1001	0.1210	0.2824	0.3611	0.4371	1.0214	1.3083	1.5844	0.0845	0.1074	0.1297	0.3037	0.3876	0.4690	1.0997	1.4059	1.7008
1.08	0.0802	0.1024	0.1238	0.2885	0.3694	0.4475	1.0443	1.3392	1.6232	0.0862	0.1098	0.1328	0.3102	0.3965	0.4801	1.1239	1.4390	1.7426
1.1	0.0820	0.1047	0.1267	0.2948	0.3779	0.4580	1.0678	1.3706	1.6621	0.0881	0.1123	0.1358	0.3168	0.4055	0.4913	1.1487	1.4724	1.7847
1.3	0.1003	0.1290	0.1566	0.3624	0.4670	0.5675	1.3186	1.6998	2.0660	0.1072	0.1379	0.1675	0.3873	0.5000	0.6078	1.4113	1.8211	2.2147
1.5	0.1194	0.1541	0.1872	0.4336	0.5593	0.6804	1.5813	2.0404	2.4818	0.1272	0.1657	0.2001	0.4615	0.5986	0.7273	1.6852	2.1809	2.6571
1.7	0.1394	0.1796	0.2185	0.5065	0.6556	0.7985	1.8504	2.3872	2.9033	0.1476	0.1911	0.2329	0.5393	0.6960	0.8505	1.9651	2.5463	3.1031

In Table 5, the listed values are directly collected from the FMSUMparse.sh shell routine showing in Figure 29. These were manipulated into non-dimensional calculations and plotted in the results section of this report. The values listed are in units of Newton (N), the "F" is the slenderness ratio, and the "SF" is the radial scaling factor.

- Pressure drag decreases with an increase in slenderness ratio, however it results in a significant increase in viscous drag
- Take this into account when considering best optimization for nosecone

Figure 21: Viscous Drag (f=3)

Von-Karman

X¹/₂ Power Series

- Simulation done at Mach .6
- Von-Karman minimizes flow separation at the tip
- Velocity increases at a faster rate along the surface of the X¹/₂ Power Series nosecone

Von-Karman

X¹/₂ Power series

- Current design considerations are 24in L / 6.221in D (approximate slenderness ratio of 4)
- Supersonic- 10 s Transonic- 15 s Subsonic- remainder (Open Rocket)
- Von-Karman performs better in the Transonic region, while the X¹/₂ Power Series performs better in the Supersonic region
- Max drag coefficients at Mach 1.53 (Open Rocket) Von-Karman(.09), X¹/₂ Power Series(.08)

Von-Karman

X¹/₂ Power Series

 Oblique shock wave for von-karman occurs at a smaller angle so the shock wave is weaker than the shock produced by x¹/₂ Power Series

- Currently we are going with the Von-Karman considering the most time spent is in the Transonic region, and it performs fairly well or superior in the other regions
- Component Analysis in Open Rocket has the drag coefficient for X¹/₂ Power Series and Von-Karman NC at .03 all throughout the subsonic region
- Conduct sims in the Transonic and Supersonic regions to get a better idea of how they perform(Open Rocket analysis not highly reliable in supersonic region)
- Conduct 2d/3d sims to research the most effective slenderness ratio
- Utilize Open Rocket to see affects on apogee
- Take into account volume needed for the drogue shock cord and parachute to fit inside, as well
 as manufacturing issues that could result from lengthening the nosecone

Body Tubes

Component	Pressure C _D	Base C _D	Friction C _D	Total C _D
Total	0.127 (24%)	0.144 (28%)	0.249 (48%)	0.520 (100%)
Nose Cone	0.066 (13%)	0.000 (0%)	0.020 (4%)	0.086 (17%)
nosecone straight	0.000 (0%)	0.000 (0%)	0.004 (1%)	0.004 (1%)
switchband	0.000 (0%)	0.000 (0%)	0.002 (0%)	0.002 (0%)
upper Tube	0.000 (0%)	0.000 (0%)	0.040 (8%)	0.040 (8%)
mid Tube	0.000 (0%)	0.000 (0%)	0.030 (6%)	0.030 (6%)
Transition forward nox	0.009 (2%)	0.000 (0%)	0.000 (0%)	0.010 (2%)
nox tank	0.000 (0%)	0.000 (0%)	0.076 (15%)	0.076 (15%)
Transition aft nox	0.029 (6%)	0.000 (0%)	0.000 (0%)	0.030 (6%)
lowest Tube	0.000 (0%)	0.000 (0%)	0.055 (11%)	0.055 (11%)
Trapezoidal Fin Set	0.005 (1%)	0.000 (0%)	0.004 (1%)	0.009 (2%)
Tailcone	0.000 (0%)	0.144 (28%)	0.007 (1%)	0.151 (29%)

The Overall Coefficient of Drag for the carbon fiber body tubes is 0.257 (summation of coefficients of components).

Current planform is a clipped delta with an airfoiled cross section.

This has been chosen to help reduce drag caused by supersonic shocks.

Preliminary simulations show a drag coefficient of around .0075, which is lower than the OpenRocket prediction of .009.

Fins

Velocity at 1000 ft/s

Static Pressure at 1500 ft/s

Velocity at 1500 ft/s

Fins

Fin flutter is a major risk of failure for fins, which could lead to their complete failure.

By choosing airfoiled fins, calculating fin flutter velocity became more difficult, as the thickness is not constant. To find a thickness, the area of the base of the fin was found. The area was then divided by the root chord. In essence, this method finds the flutter velocity of a rectangular fin with similar dimensions.

Thickness = 1.667 / 10 = .1667 in

Ansys simulations could provide a more accurate method of calculation flutter velocity.

Fin Flutter Velocity Cal	culations
$a \coloneqq 1125.33 \frac{ft}{s}$	Speed of Sound
$AR \approx .5714$	Aspect Ratio
P≔11.77 psi	Air Pressure
λ :=.4	Taper Ratio
$t := 0.1667 \ in$	Thickness
G≔7498450 psi	Shear Modulus
$c \coloneqq 10 \ in$	Root Chord
$V_f \coloneqq a \cdot \sqrt{\frac{1}{(1.33)}}$	$\frac{G}{37 \cdot (AR)^3 \cdot P \cdot (\lambda + 1)}$
	$2 \cdot \left(AR+2\right) \cdot \left(\frac{t}{c}\right)^3$
$V = (7.410 \cdot 10^3)$	ft
$v_f = (7.419 \cdot 10)$	8

Tail Cone

Current design is a Conical Straight Tail Cone.

Purpose is to reduce the wake region behind vehicle during flight, reducing drag when compared to exclusion of a Tail Cone.

Conical Tail Cone chosen due to ease of manufacture and combustion chamber size constraints, which make the performance differences between different designs minimal.

Coefficient of Drag is currently 0.155 for this component, according to OpenRocket Component Analysis.

*units are inches

Shroud

Purpose: protects external antennas from ground impact

The current design uses a Von Karman geometry for its nose and tail sections, with a 6-inch cylindrical section for the antenna

Plastic or fiberglass will be used, allowing for an RF transparent enclosure

Shroud

What's next:

A hook for attachment to the body of the rocket will be included in later iterations

The design will be further optimized for varying sizes of the antennas

Different cone designs will be tested and compared

Testing will be done on the current design

Structures Requirements

Requirement	Verification Method
Launch vehicles shall be adequately vented to prevent internal pressures	Inspection
developing during flight and causing either damage to the airframe or any	
other unplanned configuration changes.	
Joints shall be designed such that the coupling tube extends no less than	Inspection
1 body tube diameter (1 caliber) into the airframe section from which the	
coupler will separate during flight.	
Joints shall be designed such that the coupler tube extends into the	Inspection
nosecone/tailcone/transition to the lesser of 1 body tube diameter (1	
caliber) or the maximum depth possible by the design of the	
nosecone/tailcone/transition.	
Joints shall be designed such that the coupling tube extends into the	Inspection
mating component to the lesser of 1 body tube diameter (1 caliber) or	
the maximum depth possible by the design of the mating component.	
Joints shall be affixed by mechanical fasteners and/or permanent	Inspection
adhesive.	
Regardless of implementation (e.g., RADAX or other join types) airframe	Analysis
joints shall prevent bending, see https://www.osti.gov/biblio/5007820.	

Structures Sub-System

The Structures Team is responsible for the robust and nominal design of an airframe that can withstand all applied stresses, pressures of supersonic flight, and integrate all components of the rocket from other systems.

Structures Requirements

All load bearing eye bolts shall be of the closed-eye, forged type.	Inspection
The load bearing eye bolts, U-bolts, links, and any bolt and eye-nut	Inspection
assembly used in place of an eyebolt SHALL be steel.	
Load bearing U-bolts shall have mounting plates to ensure proper force	inspection
distribution	
The rail guide shall integrate with the LTI Launch Rail	Inspection
Rail buttons shall be attached using at least one metallic fastener through	Inspection
the reinforced airframe.	
Rail buttons shall implement "hard points" for sliding mechanical	Inspection
attachment of the rocket to the SA Cup supplied 1515 launch rail, serving	
to guide the rocket during the initial phase of boost until the rocket	
achieves sufficient velocity for the fins to provide aerodynamic	
stabilization	
The aft most launch rail button shall support the launch vehicle's fully	Inspection
loaded launch weight while the rocket is in a vertical orientation.	

Structures Requirements

The IREC Team WILL either lift the vehicle by the rail guides and/or	Testing
demonstrate that the bottom guide can hold the vehicle's weight when	
vertical before permitting them to proceed with launch preparations.	
The body tubes shall withstand bolt tear out with a safety factor of 2.	Analysis
The fins shall not be sheared off the rocket during flight	Analysis
The fins shall be securely attached to the fuselage.	Inspection
All bolts torqued down to proper spec.	Inspection

Structures TPMs

Measure	TPM Value	Units	Verification Method	
Max load on airframe	[]	lbf	Ansys Fluent	
Max size of internal volume (upper/middle tube)	1710	In^3	SolidWorks, Open Rocket	
Max size of internal volume (nosecone)	340	In^3	SolidWorks, Open Rocket	
Max allowable snatch force	1406	lbf	Handcalcs	
Max shear force per bolt	608	lbf	calculator	

Structures TPMs

Total body stress	3222	psi	Calculator	
Max bending	7564	Lb-in	Calculator	
moment				
Max strain	0	in/in	Ansys Mechanical/	
			Composite Prepost	
Max size of internal	210	In^3	SolidWorks,	
volume			Open Rocket	
(combustion				
chamber)				
Component fit	0	In	Component testing	
tolerancing				
Max allowable	29000	psi	Calculator	
bearing stress				
Max body shear	245	lbf	Calculator	
force				

Structures Interface Diagram

Structures Component Breakdown

Tail Cone Shoulder Design

- Creating the Coupler to Fit Between the Body Tube ID (Inner Diameter) and Combustion Chamber, Holes will be Created Allowing Mounting Positions for Fin Inserts (Hole Shape TBD)
- Tail cone shoulder is sandwiched between combustion chamber and fins
- Coupler would have slits to align fin attachment points

Coupler's Design

- Outer Diameter: 6.021"
- □ Coupler Thickness Approx 0.111"
- DTEG Coupler Requirement: 1 Cal
- Rocket Diameter is Approx 6 Inches, Requiring Recovery Coupler Minimum Length to be 6 inches plus switch band length
- □ Internal couplers length
- □ Composite Envision Cost :
 - 2x2' \$115.90/ lyd

Coupler Wall Thickness (in) 0.111093263

Bulkheads & Retaining Rings

Component	Materials		
Retaining Rings	Aluminum Rings		
Bulkhead	Pre-Preg Carbon Fiber		

Schedule

- ANSYS simulations
- Optimize current design for load cases

Fin Reinforcement

- Fin brackets attach to the fins and body tube.
- 6061 Aluminum fin brackets
- 12¹/₄" screw holes to attach to the airframe and fins, 6 in each side
- 10 in. long Fin tabs, 8 in. x 1.2 in. Brackets with 1/4 in thickness.
- Countersink holes and fillets for dynamic efficiency and stability

Schedule

 ANSYS Simulation to verify and optimize structural design and efficiency to ensure bracket capable to withstand forces apply to the fin.

Body Tubes

Name of Body Tube	Unit	Payload Tube	Electronics Bav	Plumbing Bav	Motor Tube
Length	in	36	24	32	18
Weight	lb	2.2	1.5	2	1
Thickness	in	0.1	0.1	0.1	0.1

Composite Layup

Material

- 3k Bi-Axial 2x2 Twill Pre-Impregnated Carbon Fiber
- Possible Layups
- "Roll" Wrap
- 0/90

Description	Value	Units
Ammount of Fabric to Purchase	≈4 0	Yards
Layers of Carbon Fiber	6 to 8	Plys
Tube Thickness	0.1	Inches

Future Considerations

- UTM Testing
- Run ANSYS Sims for Layup

Rail Guides

- SRAD Aluminum Rail Guides
- Optimized for better air flow

Material:

- Scrap Aluminum from machine shop
- Machined through UCF machine Shop

Next Steps:

- Iterative design to optimize air flow over guide
- More Subscale Models to test on KXR 1515
- Create Internal Component

Airframe Jointing Hardware

standard bolt - + + + drag Countersunk Bolt the the drag

Final bolt length subject to change*

We are choosing ¼-20s, ballpark cost = \$40-50 including drill bit

Jointing Hardware cont.

Need shear strength! Typically, = 60% tensile strength TS = youally given per bolt

1/4-20: TS = 80,000 PSI SS= 48,000 ps1 18-8 stainless steel, underent profile 3/8" - 12" versions #8-32: TS= 80,000 PSI SS= 48,000 PSI 18-8 stainless steel, undercut 3/18"-1" Versions #10-32: TS = 80,000 PSI SS = 48,000 PSI 18-8 stainless, undercut " versions

Essentially, the bolts will be fine. What we really need to worry about is bolt tear out from stress on the airframe.

Jointing Hardware cont.

number of	bolt major
bolts	diameter (in)
8	0.25
ldeal numbe	rs from ¼'-20s
Aax Shear Force	Bearing Stress
per Bolt (lbf)	(psi)
607.9366682	24317.46673

SAE			
	Dmajor	Ultimate St	trength (lbf)
Screw size/tpi	(inch)	Shear ^[1]	Tensile [2]
#2-56	0.086	354	540
#4-40	0.112	577	880
#5-40	0.125	753	1150
#6-32	0.138	865	1320
#8-32	0.164	1330	2030
#8-36	0.164	1402	2140
#10-24	0.190	1664	2540
#10-32	0.190	1900	2900
1/4-20	0.250	3020	4610
1/4-28	0.250	3456	5275

Example calculations for multiple bolt types Max force pending final verification*

What's next: further testing and calculations to verify the number of bolts relative to max force on the airframe

NOX Tank Interface

- Tube attaches to NOX Tank Bulkhead
 - Threaded ¼-20 holes
 - Slides over tank 1 Caliber or 6 inches
- Approx 60 ¼-20 bolts in a staggered pattern
 - 30 Forward
 - 30 AFT

Combustion Chamber Interface

- Stretches from center of lower body tube to end of tail cone
- Retained within airframe with thrust plate
- Centering Ring on Combustion
 chamber at 1 CAL down

1⁄4-20

Payload Integration

- Payload will attach to main shock cord in upper body tube
- Payload will be situated above payload bulkhead and inside joint coupler of upper and mid tube

Avionics & Payloads Camera Module Integration

- Avionics Service Module and Camera Module to be located between recovery bulkhead and telemetry bulkhead
- Four equally spaced holes to account for cameras
- QD Camera faces outward away from rail between two camera module holes

Questions?

Risks & Mitigations

Risk	Mitigation
External components shear off	Ensure proper attachment
Bulkhead tear out	Retaining rings are simulated to 2x safety factor
Bolt tear out	Bolts are rated to bearing stress below steel allowable stress
No signal from Avionics	Antennas are mounted properly to gather data
Incorrect simulation give faulty values	Ensure hand calc methods and simulations are verified
Components don't fit together	Track components through ICDs, communicate with REs with design, and track said changes within change log

Recovery Sub-System

The Recovery Subsystem is responsible for designing parachutes that can withstand high opening forces, a robust coupler that can handle all recovery flight loads and all necessary electronics that can operate under supersonic flight conditions to ensure a controlled descent and a safe recovery

Questions?

Recovery Requirements

Requirement	Verification Method 📩
The Recovery Sub-System shall safely recover the rocket.	Demonstration
The Recovery Sub-System shall be reusable.	Demonstration
The Recovery Sub-System shall be recovered in resuable condition.	Demonstration
The Recovery Sub-System shall implement adequate protection.	Demonstration
The Recovery Sub-System shall fully ground and flight tested.	Demonstration
The Recovery Sub-System shall activate the Primary Main Deployment Charges at [1000 ft] AGL.	Test
The Recovery Sub-System shall activate Redundant Main Deployment Charges [2] seconds after Primary Main Charges are activated.	Test
The Recovery Sub-System shall activate Primary Drogue Charges at apogee.	Test
The Recovery Sub-System shall activate Redundant Drogue Deployment charges [2] seconds after Primary Drogue Charges are activated.	Test
The Recovery Sub-System shall successfully separate Body Tubes within [1] second of activation.	Test

Recovery Interface Diagram

Recovery Component Breakdown

Black Powder Ejection

- Two Methods of Ejection:
 - Drogue Charge Cannon
 - Main Charge Well

Methodology of the Charge Cannon

- The Black Powder is ignited and then burns in the barrel. Due to the confined space in the barrel, it burns better without losing to much of its energy to generate the pressure required to shear the pins at high altitudes.
- Charge wells will be designed to fit 1.5x the amount of Black powder required to ensure there's space in the event more is needed.

Recovery TPMs

Measure	TPM Value	Units	Verification Method
Maximum Compressive Force	[TBD]	lbs.	Analysis
Average Snatch Force (Main)	[928.4]	lbs.	Analysis/Calculator
Upper Bound Snatch Force (Main)	[1406]	lbs	Analysis/Calculator
Lower Bound Snatch Force (Main)	[492.3]	lbs	Analysis/Calculator
Volume of Recovery Chamber	[290.13]	in^3	Inspection
Drogue Descent Rate (At deployment)	[92]	ft/s	Test
Main Descent Rate	[21]	ft/s	Test
Drogue Black Powder Mass	[20]	grams	Test
Main Black Powder Mass	[35]	grams	Test
Drogue Shear Pins	[10]	6-32	Inspection
Main Shear Pins	[8]	10-32	Inspection

Black Powder Testing Plan

- Charge Cannons Testing Plan
 - High Performance Filament will be used
 - Use test results to fulfill our TPMs while keeping space to a minimal
- Charge wells test will occur during our scheduled ground test
 - The data acquired will be used to update the Black Powder amount needed
- Vacuum test will be used to test if altimeters are triggering at their respective altitudes
 - This will be conducted by removing the air inside the rocket. A barometer will be inside the rocket to verify results

Drogue Parachute

- Slows the rocket to 115ft/s
- Generates a snatch force of 135lb at deployment
- 48" Outer Diameter
- 10" Vent Hole
- 55" Shroud Line
- Drag Coefficient 0.6

Recovery Coupler Diagram

- Charge Cannons are pictured in red and are the longest cylinders to the left
- All internal components are kept in place 1via PVC pipes. They are pictured in purple
- Main Charge wells are pictured to the right in orange. To make room, they extend outwards

Internal Structures

Multiple designs were considered, but ultimately, we chose this one for space reasons, after deciding to go with black powder. -->

Previous Designs:

When we were doing co2 ejections these were the designs considered:

Parachutes Overview

- Drogue parachute deploys from nosecone at 30,000 ft
- Main parachute deploys from body tube at 1,500 ft with payload
- SRAD 48" Disk-Gap-Band Drogue Parachute
- SRAD 132" Toroidal Main Parachute
 - Custom deployment bag and pilot chute
- Kevlar Shock Cords

Main Parachute

- Slows the rocket to its touchdown velocity of 21ft/s
- Generates a snatch force of 1,400lb at deployment
- 132" Outer Diameter
- 27" Vent Hole
- 156" Shroud Line
- Drag Coefficient 2.2

Parachute Testing Plan

- Manufacture drogue parachute and subscale main parachute
- Test parachutes to validate drag coefficient values (Cd)
 - Either drop test and measure descent rate, or wind tunnel test and measure drag force
- Use test results to update main parachute geometry

Parachute Materials

- Shock Cord
 - Drogue Chute Line 3/8" tubular Kevlar, 45ft
 - Main Chute Line ½" tubular Kevlar, 85ft
- Canopy
 - Drogue, Main, and Pilot Canopy 1.1oz Ripstop Nylon, 24yd
- Shroud Line
 - Drogue Line 275lb Nylon Paracord, 200ft
 - Main Line 750lb Spectra, 180ft

Electrical and Controls

- Primary Altimeter: Stratologger CF
- Redundant Altimeter is the Blue Raven by Featherweight
- For the primary altimeter, the servo board is no longer needed as the e-matches will be wired directly to the altimeter.

- Redundant altimeter does require an interface board due to its complex wiring interface
- Both altimeters utilizes a 9V battery for power and a limit switch to arm and disarm

Battery Life Calculations

- Blue Raven Altimeter:
 - Power draw will be tested via a drain test
- Stratologger CF Altimeter:
 - 565 mAh / 1.5 mA = 376.6 hours
- Featherweight GPS:
 - Average consumption 400 mAh / 60 ma = 6.66 hours

$$Battery \ Life = \frac{Battery \ Capacity \ in \ Milli \ amps \ per \ hour}{Load \ Current \ in \ Milli \ Amps \ per \ hour}$$

Data Acquisition

- Run-cam 2 is used to collect high-definition videos of our parachute deployment so that we can compare our test opening characteristic and our actual
 - It also enables us to get some cool shots of our deployment for promo videos
- Featherweight GPS will be our primary tracker on locating the rocket. We will have 2 SRAD GPSs (Beacon and ASM)
- Blue Raven will be acquiring the following data
 - Horizontal velocity at apogee
 - Tilt losses during motor burn
 - Max drag acceleration during coast
 - Roll rate and angle

Recovery Hardware

- Main Chute Eyebolt is rated for 3000lbs
- Drogue Eyebolt is rated for 1300lbs
- Drogue shear pins: 6-32 pins (10)
- Main shear pins: 10-32 pins (8)
- Drogue Swivel link rated for 600lbs
- Main Swivel link rated for 1900lbs
- Quick links are rated for 900 lbs
- All hardware are to spec with a margin of safety

Eye Inside Lg. B

Risks & Mitigations

Risk	Mitigation
Black Powder falling out of the charge well	Ensure that the lid is completely sealed with a cap and tape
Arming sequence	Utilize a Stethoscope to listen to the beeps
Altimeter doesn't ignite the black powder	A redundant altimeter will be installed in the coupler to fire off the redundant charges
Charges go off after going sonic	All altimeters must have a mach lockout
Parachutes getting burned	All parachutes will be surrounded by Nomex fire resistant material to ensure the hot gases doesn't burn it
Components don't fit together	Track components through ICDs, communicate with REs with design, and track said changes within change log

Questions?

Manufacturing Team

The manufacturing team is responsible for all steps of the engineering process as it relates component fabrication, mold design, material selection, and physical airframe architecture. We take into consideration the machinability, compatibility, cost, and scheduling when making manufacturing decisions. Our components have been separated amongst designated REs (Responsible Engineers) who are responsible for overseeing and managing the part throughout the manufacturing process.

Manufacturing Requirements

Requirement	Verification Method 🔽
The Manufacturing Team shall produce external structure components with minimal surface roughness.	Demonstration
The Manufacturing Team shall produce tubular components that are sufficiently round within [0.005] inches.	Inspection
The Manufacturing Team shall create manufacturing procedures and verify said procedures prior to manufacturing flight articles.	Inspection
Requirement	Verification Method 💌
All Molds shall be able to withstand a vacuum pressure of [1] ATM.	Demonstration
All Molds shall be able to withstand the [300 Degrees Fahrenheight] temperature of the autoclave.	Demonstration
All Molds should be non-reactive with acetone.	Demonstration
All Molds shall be chemically resistant to bonding with chosen matrix material.	Demonstration
All Molds shall be easily reproducible for means of reusability.	Demonstration
All Molds shall resist bonding with composite fabric.	Demonstration
The Mandrel Mount shall safely secure the mandrel during the layup process.	Demonstration
The Mandrel Mount shall provide a means to achieve a secure vacuum seal.	Demonstration
The Mandrel Mount shall be able to withstand the temperatures of the autoclave.	Demonstration
The SRAD Couplers shall have a length of at least [12] inches.	Inspection
The SRAD Couplers shall have a diameter of [TBD] inches.	Inspection
The SRAD Couplers shall be stiff when joined with Body Tubes.	Demonstration
The SRAD Couplers shall have a diametrical tolerance of [-0.003] inches.	Inspection

Manufacturing Risk Assessment

Risks	Mitigation Strategy
Delay in arrival of manufacturing materials	Order materials with longer processing/shipping timeline ahead of schedule
Errors during the manufacturing process leading to a scrap of the entire part	Implement preliminary testing period with sub-scale models to ensure familiarity and proficiency with rocket layup technique/principles
Collapsing occurring during the 3D fabrication process	Perform excessive calibration of the 3D printer used as well as using practice prints to ensure the final product is optimized
Imperfections during the manufacturing process being extrapolated towards the final product	Combine all procedures and cautious practices when dealing with expensive components
Human errors in post-processing of components	Implement procedure to ensure that excessive care is utilized when dealing with layup product to prevent scrap

Airframe Material

Using a pre-impregnated carbon fiber reinforcement will offer increased material strength properties while keeping the price within our budgetary constraints. Material Decision: We are going to be utilizing a <u>3k 2x2 twill biaxial carbon fiber</u> for our rocket's airframe. Initially, we considered using a hybrid composite carbon fiber/fiberglass, but ultimately decided that the increased costs and weight-to-thickness ratio were significant constraints that convinced us otherwise.

Manufacturing Component Breakdown

Mold Material

	TPU	ABS
Temperature Resistance	250-300° F	200-250° F
Price	\$20/Kg	\$30/Kg

Material Decision: TPU due to its advantageous thermal capacity, ease of printing, and price difference.

Female Mold	Male Mold
No experience/familiarity with process	More experience within KXR
Better surface finish before PP	Vacuum bag compatibility
High separation difficulty post-cure	Easier separation post-cure

Mold Decision: Male mold due to the team's experience and practicality. The surface finish benefit from a female mold does not warrant the extra difficulty in post processing.

Nose Cone Fabrication

Material: TPU (Thermoplastic polyurethane)

- Heat Resistance 250-300F
- Pressure Resistance 14.7 psi

Sub-scale Model

- Can be made simply by adjusting dimensions in CAD
- Will give new engineers experience for lay-up

Reasoning for male-mold selection

- Increased ease of removability of Nosecone after use.
- Cheaper to 3D-Print than a female mold due to a smaller amount of TPU filament being used.

Mandrel Mounting Method

Goals for the Mandrel Mounting Stand:

- Mandrel Size: 44in
- Responsible for both holding the mandrel up, and creating a smooth body tube product via the rolling pin style system
- This design is a modular system which will allow the team to disassemble the stand to fit within the space of an autoclave.

SULPUCKI Stantana Iroda. For Instructura II and III.

Expanding Mandrel Plug:

- This is a concept of an expanding mandrel plug; this is the female interface which would accept a wedge into the opening. Secured by a threaded fastener, when tightened, the wedge would cause the plug to expand.
- Material: Steel
- Reason of Refusal: High Cost (est. \$800/ft per 6" steel rod)

-Material: Steel/ Aluminum

-**Temp Resistance**: 932-1275 F

Mandrel Mounting Method

Summarized Body Tube Layup Procedure

- The Mandrel will be set down into place, then be secured via nuts and washers on either side of the assembly.
- Carbon Fiber Prepreg will then be rolled onto the mandrel.
- Entire assembly will be put into autoclave to be hardened.

Updated Mandrel Plug

- Press fit design.
- Accepts bearings for smooth operation of rolling procedure.
- 3D Printable Design.

Cost:

- 2" Square tubing \approx \$8.00/ft
- $\frac{1}{2}$ " Steel rod \approx \$3.00/ft
- 90° Brackets \approx \$2.00/bracket
- Ultem Filament ≈ To be Determined

Coupler Fabrication

Design Consideration

Material of choice: Carbon Fiber (same as airframe) Fabrication Method: Pre-impregnation with 24" Steel Mandrel <u>3-4 couplers for rocket body</u>

Measure	TPM Value	Units	Verification Method
Axial Compressive load	-	<u>Lbs</u>	Numeric calc. / Ansys
Bending moment load	-	Ļbs	Numeric calc. / Ansys
Load Safety Factor	-	F.S./Lbs	Numeric calc.
Bending Moment Load	-	F.S./Lbs	Numeric Calc.
Safety Factor			
Parachute shock load	-	Lbs /	Numeric Calc. /
		in/in	OSCALC software
Bolt holes shear value	-	<u>Lbs</u>	Numeric Calc.
Bolt requirements F.S.	-	<u>Lbs</u>	Numeric Calc.
base			

Requirement	Verification Method
The couplers shall be 1.5 cal into each side of the airframe	Design specification
The couplers shall be structurally stable	Ansys/Numeric Calculations
The couplers shall include specific subsystem requirements (i.e. access holes)	Design specifications
The couplers shall include specific length tolerancing is accounted for from the propulsion-payloads –recovery section	Design Specifications

Fin Fabrication

FORM COREFINS -Foam make mold -easy to machine into airfoil - easy to bond with CF -CF provides structural integrity - familiar layup process - avoids release film Form machine Breinforce with traditional PP(F into make mold Some material as body tube ~ 3h 2x2 biaxial ~

Using a foam core fin structure to combine the machinability properties of foam to generate a male mold and the structural integrity provided by the 3k carbon fiber reinforcement.

The layup process will be optimized as the foam core is not intended to be separated, meaning the separation agent present in most mold layups will be abandoned to create a bond with the carbon fiber shell. Instead, a 3M High Bond Adhesive will be used to encourage binding.

NIGHTS EXPERIMENTAL ROCKETR

Tail Cone Fabrication

Mold Requirements:

- Withstand curing temperature of 250° Fahrenheit
 - and a pressure of 14.7 Psi (1 atm) inside of the autoclave
- Easily reusable with minimal processing
- Doesn't bond to the composite

Design Considerations:

- Material choice for the mold
- Type of mold (Female/Male)
- Sizing and Structuring

Schedule

- Material Order Date Order materials
- **Estimated Lead time** 1-2 weeks
- **Date** Materials arrive
- [2 days] 3d printer subscale printing
- [2-3 days] full scale prototype printing
- [2-3 days] autoclave testing/adjusting thickness
- [3 days] flight layup + curing process
- [1 day] post processing and flight ready product

Questions?

Propulsion System Preliminary Design Review

Spaceport America Cup 2024

IREC 30k SRAD Hybrid Engine, Experimental Payloads, and Airframe

10/30/23

Propulsion System Architecture

- 40 in Combustion Chamber
 - Fuel: Paraffin Wax-Sorbitol Grain
- 68in Oxidizer tank
 - Oxidizer: Liquid Nitrous Oxide
- Total System Height: ~10 feet
- Total System Weight: ~75 lbs wet
- Target Apogee: 30,000ft AGL
- Target Thrust:
 - 1,500lbf peak
 - 8,992lbf-s impulse (40,000Ns)

Propulsion System Requirements

Requirement	Verification Method
The Propulsion System shall have a wet mass of [80] lbs.	Inspection
The Propulsion System shall have an impulse of [36,948] Ns	Test
The Propulsion System shall have a dry mass of [55] lbs.	Inspection
The Propulsion System shall easily fit into the inner diameter of the airframe.	Demonstration
The Propulsion System shall have a peak thrust of [1,837] lbs.	Test
The Propulsion System shall implement Liquid Nitrous Oxide as an oxidizer.	Demonstration
The Propulsion System shall passively vent under [30] minutes.	Demonstration
The Propulsion System shall provide thrust to the Vehicle.	Demonstration
The Propulsion System shall withstand aerodynamic forces.	Analysis
The Propulsion System shall withstand its own produced forces.	Demonstration
The Propulsion System shall recover safely and without damage.	Demonstration
The Propulsion System shall be reusable.	Demonstration
The Propulsion System shall fill in under [30] minutes.	Demonstration

Propulsion System Interface Diagram

Propulsion System CONOPS

Propulsion Organization Chart

Propulsion System TPMs

Measure	TPM Value	Units	Verification Method
Total Length	[120]	in	Inspection
Max OD	[6]	in	Inspection
Peak Thrust	[1837]	lbf	Testing
Impulse	[36,948]	Ns	Testing
Total Burn Time	[10-12]	S	Testing
Dry Weight	[25]	lbs	Inspection
Wet Weight	[80]	lbs	Inspection

Propulsion System Cost

•Fluids Cost ~ \$3500

•Combustion Cost ~ \$2500

•Mechanical Cost ~ \$1800

•Buffer ~ \$500

•Total ~ \$8300

Cost Breakdown

Propulsion System Risks

Risk	Mitigation
NOx Leak	Properly installing all fittings, as well as choosing Yor/Swage/Hy-Lok fittings.
Ignition Failure	Using two E-matches for redundancy, as well as including a mold in the fuel grain that will retain the igniter at the top and in the port of the grain.
Incomplete Ignition	Using a mold in the fuel grain to hold the igniter against it.
NO Solenoid Burnout	Designing a system that automatically closes the Solenoid if it's duty cycle is a starting to get reached, as well as monitoring the time it's open.
Burn through	Oversizing and properly casting the fuel grain. Also thickening exposed parts of the liner.
Incomplete Fill	Adding redundant sensors as well as coordinating with LTI to ensure tha there's enough NOx for each fire/launch attempt.

Propulsion System Verification Plans

- 1. FEA on mechanical design and fluids sub-systems components
- 2. CFD on nozzle and injector
- 3. Inspection of COTS and machined components
- 4. Dry fit of propulsion system
- 5. Valve and electronic component testing
- 6. Hydrostatic Test
- 7. Water Flow Injector Test
- 8. Cold Flow Test
- 9. Static Fire Test
- 10. Launch

Fluids Sub-System

- Store oxidizer
- Provide mass flow to combustion chamber
- Fill through GSE
- Measure tank temperature and pressure
- Regulate pressure
- Integrate with airframe

Fluids Sub-System Requirements

Requirement	Verification Method
The Fluids Sub-System shall have a Dry Weight of [TBD] lbs.	Inspection
The Fluids Sub-System shall have a Total Length of [TBD] inches.	Inspection
The Fluids Sub-System shall withstand a minimum temperature of [223.15] Kelvin.	Analysis
The Fluids Sub-System shall withstand a Maximum Expected Operating Pressure of [1500] psi.	Test
The Fluids Sub-System shall be reusable.	Demonstration
The Fluids Sub-System shall provide liquid Nitrous Oxide to the Combustion Sub-System.	Demonstration
The Fluids Sub-System shall provide sensor data to the Propulsion Control Board.	Demonstration
The Fluids Sub-System shall provide an initial Oxidizer Mass Flow Rate of [4.8 lb/s] to the Injector.	Test
The Fluids Sub-System shall contain all liquid Oxidizer without unintentional flow or leaking.	Test
The Fluids Sub-System shall vent when overpressurized.	Demonstration

Fluids Sub-System TPMs

Measure	TPM Value	Units	Verification Method
Total Length	[80]	inches	Inspection
Total Oxidizer Weight	[45]	lbs	Inspection
Maximum Expected Operating Pressure	[1000]	psi	Test
Delivered Mass Flow	[7.97]	lb/s	Test

Fluids Sub-System Interface Diagram

Fluids Sub-System Component Breakdown

Oxidizer Tank Casing

Machined from Aluminum Cylinder: \$138.23

Oxidizer Tank: Forward Bulkhead

- Aluminum 6061 T6
- 1⁄4-20 bolts X30
- 2 radial bolt patterns
- ³⁄₄-16 threads X3
- 2-355 O-rings
- Machined in house

Force on Bolkheads	
Sufface Area of 1/2 a 5.625" diouter sphere.	1
$A = 2\pi r^2 = 2\pi \left(\frac{5.625}{2} \ln \right)^2 = 49.7 \ln^2$	-
Forecel. = (49.7 in2)(1000 psi)(1.5)= 74550 lbs builthead	1 1 1
Nowber = Fon bulklead drinorbolt = 0.191 of bolts Abut · Ogher bolt Offer = 90,000 psi	112
N = 74550 ebs = 2745 bolts	-
	-
N = 30 bolts	_
Two rings of 15 bolts, $t=3/1$	-
$F_{bolt} = \frac{74550.0bs}{30 \text{ bolts}} = 2485.0bs}{\text{bolt}}$	-
$\begin{array}{rcl} \hline & & \\ \hline \\ \hline$	s
$\frac{E_{win} = \frac{2495 (bs(1.5)}{(\frac{b}{1b}w)(30,000 \mu i)} = 0.3314 \text{ in } EISE_{min}$	1 I T
For two rows of bolts;	
$E_{min} = E_{min1 + E_{min2}}$ $E_{min} = E_{min1 + E_{min2}}$ $E_{min2} = E_{min1}$ $E_{min} = E_{min1}$	-
En= Emin + H(driver bolt) = 1,5 dbolt major	
$E_{mini} = 0.277 in$	
Eminz = 2Emin - Emini-	
= 2(.3314in) - 0.277in	-
5-102-385Bin	
$E_1 = 0.375$ in	
$E_2 = 0.4838$ in	
KNIGHTS EXPERIMENTAL ROCK	2

Main Plumbing Overview

- 1" OD Stainless Steel Lines
- Servo Ball Valve Control
- Standardized torque specifications
- ~10'' overall length
- Constrained by the tankchamber chassis

Fitting Selection

- SAE Straight Thread Fittings
 - Designed following SAE J1926
 - No need for consumable sealing

Assembled

Fitting Selection

- Swagelok-type Tubing
 - Aerospace standard, widely available at any price range
 - No flaring = no need for special tooling
 - Pre-swaging is recommended for hard tubing but not required

Fill Line Overview

- 1/2" OD Stainless Steel Lines
- Automatic shut-off post umbilical retract

Dip Tube

- Adjustable length
- Ullage is guaranteed
 through vapor lock

Placeholder Dip Tube As Integrated with Bulkhead

Normally Open Solenoid Valve

Valve Parts in Contact With Fluid						
Body	SS					
Seal Disc	Polyimide					
Plunger Tube	303 SS					
Plunger	430F SS					
Plunger Stop	430F SS					
Spring	303 SS					
Rider Rings	PTFE					

Port O	Drifice	Cv	Max. Pro	essure (F	PSI)		Model Number			Wattage		
Size S	Size		AC		DC		Normally Closed		Normally Open			
(NPT) (in	ins.)		Gas	Liquid	Gas	Liquid	AC	DC	AC	DC	115/ 60Hz	24/
2-Way Nori	rmally Cl	osed & N	Normally (Open							00112	
3/8 3/	3/32	0.20	1200	800	400	125	SV91D28C1C	SV91D24C1C	SV91D28O1C	SV91D24O1C	14	21

Normally Open Solenoid Valve

Measure	TPM Value	Units	Verification Method
Discharge Coefficient	0.89	Cd	Calculation and Testing
Orifice Size	2.38	mm	Inspection
Dimensions	73.66 x 46.74 x 104.14	mm	Inspection
Temperature Range	-452°F - 200°F	°F	Inspection
Pressure Range	≤ 1200	psi	Inspection
Voltage	21	W @ 24DC	Inspection
Continuous Lifecycle	_ifecycle 5		Demonstration

Coefficient of Discharge:

$$C_d = rac{\dot{m}}{
ho \dot{V}} = rac{\dot{m}}{
ho A u} = rac{\dot{m}}{
ho A \sqrt{rac{2\Delta P}{
ho}}} = rac{\dot{m}}{A \sqrt{2
ho \Delta P}}$$

$\dot{m}=rac{dm}{dt}$

Schedule:

 4-7 Weeks Estimated Shipping

Integration:

 NOSV is Attached to Forward Bulkhead of Tank

Design Considerations:

 Replace COTS NOSV with an SRAD normally open purge valve

Pressure Relief Valve

Table of Dimensions

Basic Part No.		Orifice	End Connections		Dimensions			
			Inlet	Outlet	L1	L2	L3	
	Н	-4 T-		1/4" Hy-Lok	1/4" Hy-Lok		37.3	104.6
	н	-6M-		6mm Hy-Lok	6mm Hy-Lok	38.7		
	H -8M	-8M-		8mm Hy-Lok	8mm Hy-Lok			
RV1 H or MH RV2 MH MF MF	-8 T-		1/2" Hy-Lok	1/2" Hy-Lok		44.7	1140	
	н	-12M-	4.8	12mm Hy-Lok	12mm Hy-Lok	46 7	40.7	114.0
	MH	-8N8T-		1/2" Male NPT	1/2" Hy-Lok	40.7	35.7	103.0
	MH	-8N12M-		1/2" Male NPT	12mm Hy-Lok			
	MF	-4N-		1/4" Male NPT	1/4" Female NPT	30.0	20.0	00.5
	MF	-6N-		3/8" Male NPT	3/8" Female NPT	nale NPT 34.5		79.0
	MF	-8N-		1/2" Male NPT	1/2" Female NPT	38.0	35,7	103.0

All dimensions are in millimeters.

Pressure Relief Valve

Measure	TPM Value	Units	Verification Method
Orifice Size	4.80	mm	Inspection
Dimensions	99.5 x 33.099 x 15.65	mm	Inspection
Weight	124.59	g	Inspection
Pressures	≤ 1500	psi	Test
Temperatures	-10°F ≤ x ≤ 400°F	°F	Test

Discharge Coefficient:

$C_{1} =$	<i>m</i>	<i>m</i>	<i>m</i>	\dot{m}
$C_d =$	$\rho \dot{V}$	ρAu	$\frac{1}{2\Delta P}$	$A\sqrt{2 ho\Delta P}$
			$\rho A \sqrt{-\rho}$	

Mass Flow:

Schedule:

• 3-6 Weeks Estimated Shipping

Integration:

 PRV is Attached to Forward Bulkhead of Tank

Design Considerations:

- Search for PRV Smaller in Length
- Alternative with lower minimum working temperature

Servo Actuated Ball Valve

- COTS
- 7/8 inch internal diameter
- 4500 psi at 120° F
- -40° to 230° F
- 44 CV
- \$300
- 316 Stainless Steel

Thermocouples + Tank Raceway

Thermocouples bonded to surface of tank

Ribbon cable

3D printed shroud, depends on integration with aerostructures

Top Plumbing Pressure Transducer: Important Details

- Given ratings by Sub-System level requirements:
 - <0C
 - >1500 psi
 - Corrosive oxidizer fluids
- Needs to be properly rated to avoid over pressurization and reliability.
- Only required material is the component itself.
- Made of 204 Stainless Steel, which is known to be corrosion resistant.
- \$107.56, ships from McMaster NJ warehouse

Top Plumbing Pressure Transducer: Item Details

Pressure Range: 0-1500psi Max Short-Term Pressure: 2250 psi Output Signal: 4-20mA Accuracy: +/- 1.5% Response Time: 0.001 s Connection: 1/4" NPT, Male Temp Range: -20F – 220F Wire #: 2 Wire Length: 18" Material: 304 Stainless Steel Height: 1 13/16" Width: 15/16"

www.kxrucf.com | 12760 PEGASUS DR, BLDG 40 ROOM 307, ORLANDO, FL 32816

Future Plans

- NOS is changing to QD normally open relief
- Ball Valve Servo design
- Finalize NOX Tank Airframe connection
- Finalize Thermocouple selection

Mechanical Design Sub-System

Mechanical Design Requirements

Requirement	Verification Method
The Mechanical Sub-System shall withstand maximum operating temperature of [2600] Kelvin	Test
The Mechanical Sub-System shall withstand maximum operating pressure of [1000] PSI.	Test
The Mechanical Sub-System shall withstand all flight loads.	Analysis
The Mechanical Sub-System shall withstand all engine loads with a safety factor of [2].	Analysis
The Mechanical Sub-System shall be reusable.	Demonstration
The Mechanical Sub-System shall have a weight of [TBD] lbs.	Inspection
The Mechanical Sub-System shall have a length of [TBD] feet.	Inspection

Mechanical Design TPMs

Measure	TPM Value	Units	Verification Method
Weight	18.305	lbs	Inspection
Length	40	in	Inspection
MEOP (with Safety Factor)	[1000]	psi	Testing
MEOT	[2600]	К	Testing
Max Thrust to Withstand	[1837]	lbs.	Testing/Analysis

Mechanical Design Interface Diagram

Mechanical Component Breakdown

Chamber Forward Closure/Bulkhead

- The forward closure is integrated with four components
 - 1. Integrated with Airframe to transfer thrust to the rest of the rocket.
 - 2. Integrated with the oxidizer tank to allow the flow of oxidizer to the combustion chamber.
 - 3. Integrated with the chamber casing to maintain pressure inside the combustion chamber.
 - 4. Integrated with the injector plate to allow even distribution of oxidizer inside the combustion chamber.
- Additional uses for the forward closure
 - Housing for combustion chamber sensors.

Chamber Forward Closure/Bulkhead

- Measurements
 - Upper diameter (6 in)
 - Lower diameter (5 in)
 - Length (4.50 in)
- Calculations for the forward closure
 - # bolts for the thrust plate portion (4 bolts minimum given from aerostructures) using 8 for a safety factor of 2.
 - Thrust plate portion 1 in tall with bolts .5 in from the edge (over safety factor of 2 for tear-out)
 - # bolts for mounting casing to bulkhead calculated at 8 for safety factor of 2
 - 3 Buna O rings

- Risk
 - There are four main risk of failure
 - 1. Bolt shear
 - 2. Bolt tear-out
 - 3. Shear where the thrust plate and the casing meet
 - 4. O-ring failure
 - Schedule
 - 3 weeks to procure the raw metal.
 - 2 weeks to fabricate the part.
 - Cost
 - \$150 for 6 in diameter, 4.5 in long Aluminum 6061 cylindrical rod.
 - \$100 for the fabrication of the part.

Tensile to shear stress.

 $\sigma_{yield}(0.75) = \tau_{yield}$

Factor of safety

FOS = 2

Shear stress equation

 $\tau_{yield} = \frac{F_{thrust}}{A_{in \, shear}}$

<u>Bolt tear-out</u>

distance_{edge to center of bolt} = 2(diameter_{bolt})

Number of bolts for the thrust plate portion of the forward closure

$$\tau_{yield} = \frac{F_{thrust}}{A_{in\,shear}} = \frac{4F}{\pi d^2} = \frac{4(1500 \times FOS)}{\pi (0.196)^2} = 99430.41 \, PSI$$

 $\tau_{yield} = 85,000 PSI(0.75) = 69,000 PSI$

$$\tau_{yield} = 69,000 \times N_{bolts}$$

$$N_{Bolts} = \frac{99430.41}{69000} = 1.44 \approx 2 \ Bolts$$

For symmetry purposes 4 Bolts

Thickness of thrust plate portion of forward closure (by bolt tear-out)

distance_{edge to center of bolt} = 2(diameter_{bolt})

distance =
$$2\left(\frac{1}{4}\right) = 0.5$$
 in

thickness = 2(distanse) = 2(0.5) = 1 in

Chamber Casing

- Assumed safety factor = 2
- Machined in house (UCF Machine shop)
- Outer diameter is 5.5 inches and inner diameter is 5.25 inches
- Calculated force on each bolt is 3517N which using the safety factor of 2 it was found bolts should be .6 inches from the edge of casing to prevent bolt tear-out
- The calculated number of bolts on each side to prevent bolt sheer with a safety factor of 2 is 8

KNIGHTS EXPERIMENTAL ROCKETR

Tank-to-Chamber Chassis

• Purpose: to hold the oxidizer tank in place above the combustion chamber while also protecting the plumbing system from the force of the tank

• Implementation: We will install 3 struts made of cut and bent sheet metal (probably aluminum) that run from the bottom tank bulkhead to the forward closure (bolted directly downward)

- The sheet metal gauge is still being determined
- The chassis will only need to withstand the weight of the tank during the test fire

Nozzle Retaining Ring

- Outer Diameter: 5.25in
- Inner Diameter: 4.7in
- Calculated number of Bolts: 8 (safety factor of 2)
- Holes are .6in from edge (safety factor of 2)
- Alloy: Aluminum 6061-T6
- There will be slant on top of the ring to alleviate stress

 $\sigma_{yield}(0.75) = \tau_{yield}$ <u>Factor of safety</u> FOS = 2

Shear stress equation

Tensile to shear stress.

 $\tau_{yield} = \frac{F_{thrust}}{A_{in shead}}$

Bolt tear-out

 $distance_{edge to center of bolt} = 2(diameter_{bolt})$

 $\frac{\text{Number of bolts for the thrust plate portion of the forward closure}}{\tau_{yield} = \frac{F_{thrust}}{A_{in shear}} = \frac{4F}{\pi d^2} = \frac{4(1500 \times FOS)}{\pi (0.196)^2} = 99430.41 PSI$ $\tau_{yield} = 85,000 PSI (0.75) = 69,000 PSI$ $\tau_{yield} = 69,000 \times N_{bolts} |$ $N_{Bolts} = \frac{99430.41}{69000} = 1.44 \approx 2 Bolts$ For symmetry purposes 4 Bolts Thickness of thrust plate portion of forward closure (by bolt tear-out) $distance_{edge to center of bolt} = 2(diameter_{bolt})$ $distance = 2\left(\frac{1}{4}\right) = 0.5 in$

thickness = 2(distanse) = 2(0.5) = 1 in

ETRY

Future Plans

- Finalize chassis calculations
- Finalize O-Ring Calculations

Questions?

Knights Experimental Rocketry UCF

Combustion Sub-System

Combustion TPMs

Measure	TPM Value	Units	Verification Method
Thrust (peak)	[1837]	lbs	Testing
Maximum Expected Operating Pressure	[500]	psi	Testing
Burn Time	[10-12]	seconds	Testing
C* Efficiency	[>93%]	N/A	Testing
Impulse	[36,948]	N-s	Testing

Combustion Sub-System Requirements

Requirement	Verification Method
The Combustion Sub-System shall shall produce a C* Efficiency of [95%].	Test
The Combustion Sub-System shall adequately mix propellants during combustion.	Demonstration
The Combustion Sub-System shall produce a maximum chamber pressure of [500] psi.	Test
The Combustion Sub-System shall be housed within the Combustion Chamber Casing.	Inspection
The Combustion Sub-System shall shall have a Burn Time [10] s.	Test
The Combustion Sub-System shall provide a stable burn with minimal pressure instabilities.	Test
The Combustion Sub-System shall emit non-toxic exhaust.	Inspection

Combustion Interface Diagram

Combustion Component Breakdown

Visual Representations

Design Sheets – Orifice's Angles

Visual Representations (cont.)

Design Sheets - MathCAD

Chamber Pressure:	$P_c = 500 \ psi$	Mass Flow Rate:	$m_{dot} \coloneqq \frac{F_{thrust}}{I_{sp} \cdot g} = 3.402 \frac{kg}{s}$
Oxidizer Tank Pressure:	$P_{tank} \coloneqq 800 \ psi$ $\rho \coloneqq 589.4 \ \frac{kg}{m^3}$	Oxidizer Mass Flow Rate:	$m_{dot_ox} \coloneqq m_{dot} \cdot \left(\frac{OF}{OF+1}\right) = 6.25 \frac{lb}{s}$
Head-Loss Coefficient: Pressure Drop:	$K \coloneqq 1.7$ $\Delta P \coloneqq P_c \cdot 20\%$	Injector Area:	$A_{inj} \coloneqq m_{dot_ox} \cdot \sqrt{\frac{2.238 \ K}{\rho \cdot \Delta P}} = 0.425 \ in^2$
Hole Count: O/F Ratio:	N:=36 OF:=5		$D_{inj} := \sqrt[(2)]{A_{inj} \cdot \frac{4}{\pi}} = 0.736 \ in$
		Orifice Diameter:	$d_{orif} \coloneqq \sqrt{\frac{4 \cdot A_{inj}}{\pi \cdot N}} = 0.12263 \ in$

Technical Preliminary Measures

Measure	TPM Value	Units	Verification Method
Component Weight	[0.467]	lbs	Inspection
Mass Flow	[6]	lbs/s	Test
Number of Orifices	[36]	N/A	Inspection
Diameter of Orifice	[0.122]	in.	Inspection

Failure Modes

• Bad alignment with fuel grain geometry.

Implementation Plans

- Student Researched And Developed Component.
- Vortex injector plate with angled orifices of increased steepness as we get closer to the center of the plate.

Estimated Cost

• Injector Plate - \$ 120

Schedule

• About a week to manufacture, contingent on stock lead times.

Other Options Considered

 Before deciding on the vortex injector plate, we considered a showerhead injector, an impinging injector, and a swirl injector as well.

Pre-Combustion Chamber

- Increased NOx residency time
- Pre-heating of NOx
- Ideal length-to-diameter ratio of 0.5
- Actual length 2.233"
- Extra layers of thermal liner
- TPMs
 - Pre-combustion chamber pressure and temperature
 - Pre-combustion chamber dimensions and thickness

Post-Combustion Chamber and Mixing Plate

- Propellants allowed to fully mix
- Ideal length-to-diameter ratio of 1
- Ideal post–pre chamber length ratio 2
- Actual length 4.467" including 1" mixing plate
- Additional thermal liner layers
- Graphite mixing plate further mixes propellants
- TPMs
 - Post-combustion chamber pressure and temperature
 - Post-combustion chamber dimensions and thickness

Pre- and Post- Combustion Chambers

- Considered a design without these features
 - Decided implementation would increase efficiency
- Considered different mixing plate geometries
 - Current geometry suggests highest combustion efficiency
- Failure modes
 - Burn through liners
 - Introduction or strengthening of pressure oscillations

Table 1: All simulated post-combustion chamber devices

Fuel Grain Geometry

Nested helical port geometry

Helical ABS matrix

Grain Specs:

- OD: 5 in
- ID: 2.15 in
- Length: 24 in

ABS matrix + paraffin based fuel

Regression behavior of nested helical grain

Test-firing results of nested helical grain

Fuel Grain Geometry

Benefits of nested helical geometry

- Increase in structural integrity of the grain Longer NOx residence time in the chamber
- Turbulence due to blade vortices formed in the recirculation zone
- Maintains angular momentum of NOx along the grain

- Higher instantaneous burning surface area
- Ideal web fraction & volumetric loading efficiency
- Benefits increase over time due to difference in regression rates between ABS and paraffin

Transparent cross-sectional view of solid fuel grain

Fuel Grain Geometry

- ABS matrix manufacturing technique
 - Matrix made using additive manufacturing (3D printing) w/ thermoplastic ABS
 - Matrix will serve as mold for paraffin-based fuel which will be poured into negative space between adjacent fins
 - After paraffin wax has cooled, grain will be cut down to 6 inches along the pictured groove to create a flush surface

Fuel Grain Geometry

- General specs chart (see right)
- Modes of failure
 - Grain loses structural integrity
 and breaks up
 - Grain does not ignite
 - Grain ignites poorly and causes sputtering start
 - Grain causes uneven burn (burnthrough occurs)
 - Grain structure impedes NOx flow

Fuel Grain Dimension	Expected value
Initial inner port diameter (ID)	2.15 in
Outer grain diameter (OD)	5 in
ABS Fin Width	0.143 in
Outer ABS Layer Width	0.179 in
Inner ABS Layer Width	0.0717 in
Fuel Grain Length	24 in (four 6-in segments)
Pitch of Helical Fins	24 in (one full 360-degree rotation)
Total Initial Grain Thickness	1.425 in
Total Grain Volume	384.08 in^3
Total Grain Weight	15.8 pounds

Fuel Grain Composition

- Previously consisted of sorbitol and paraffin; with a mixture ratio of ~4:1
- With the novel fuel grain geometry, this year's fuel grain mixture ratio will consist of a ~3:2 ratio due to the nested helical providing more structural support to the fuel grain.

Fuel Grain Composition

Chemical	%weight
Sorbitol	55
Paraffin	35
Aluminum Powder	10

- This year we will be looking into potential additives to create better combustion characteristics.
- Some potential additives include: Metallic Boride Powders, Carbon Powders, and other metal powders.

Ignition Mechanism

The ignition mechanism is positioned within the ABS Matrix for efficient fuel heating – this image shows interaction of the spark with the grain.

The design of the ignition mechanism is a "puck" shape, modified to assimilate with the fuel grain geometry.

Ignition Mechanism

Structural representation of igniter

Material Test Cases

Fuel	Oxidizer	Additive
Sucrose	Potassium Nitrate	Ероху
Thermite (AI & Fe)	Potassium Perchlorate	Iron Oxide (rust)

Nozzle

Design Sheet - MathCAD

Chamber Pressure:	$P_c \coloneqq 500 \ psi$	Throat Temperature:	$T_T \coloneqq \frac{T_c}{\left(1+k-1\right)} = (2.014 \cdot 10^3) K$	Thrust:	$F_{thrust} \coloneqq TWR \cdot M_{total} \cdot g = (6.672 \cdot 10^3) N$
Oxidizer Tank Pressure:	P _{tank} :=800 <i>psi</i>	Throat Area:	$ \begin{pmatrix} 1 & 2 \\ 2 & 2 \end{pmatrix} $ $ A_T := \frac{m_{dot}}{m_{dot}} \left(\sqrt{\frac{R \cdot T_T}{2}} \right) = 1.808 \ in^2 $	Mass Flow Rate:	$m_{dot} \coloneqq \frac{F_{thrust}}{I_{sp} \cdot g} = 3.402 \frac{kg}{s}$
	$\rho = 589.4 \frac{kg}{m^3}$		$P_T \left(\bigvee M_{mol} \cdot k \right)$	Oxidizer Mass Flow Rate:	$m_{dot_ox} \coloneqq m_{dot} \cdot \left(\frac{OF}{OF+1}\right) = 6.25 \frac{lb}{s}$
Head-Loss Coefficient:	K≔1.7	Mach Number at Exit:	$M_{exit} \coloneqq \left\{ \left(\frac{2}{k-1} \right) \cdot \left(\left(\frac{1}{P_a} \right) - 1 \right) = 2.901 \right\}$	Gas Constant:	$R \coloneqq 8.31 \frac{J}{mol \cdot K}$
Pressure Drop:	$\Delta P \coloneqq P_c \cdot 20\%$	Throat Radius:	$r_T := \sqrt{\frac{-1}{\pi}} = 0.759 \text{ in}$ $\left(1 + \left(k - 1\right) + \left(1 + \frac{1}{2k - 2}\right)^{\left(\frac{k+1}{2k - 2}\right)}\right)$	Chamber Temperature:	$T_c := 2184.73 \ K$
Hole Count:	$N \coloneqq 35$	Exit Area:	$A_e \coloneqq \left(\frac{A_T}{M_{exit}}\right) \cdot \left \frac{1 + \left(\frac{1}{2}\right) \cdot \left(M_{exit}\right)^2}{k+1}\right = 11.586 \ in^2$	Atmospheric Pressure:	$P_a \coloneqq 12.2 \ psi$
O/F Ratio:	OF = 5	Area Ratio:	$\varepsilon \coloneqq \frac{A_e}{A_T} = 6.41$	Specific Heat Ratio (for exhaust):	$k \coloneqq 1.17$
Specific Impulse:	I _{sp} :=200 s	Exit Radius:	$r_e \coloneqq \sqrt[2]{rac{A_e}{\pi}} = 1.92 \; \textit{in}$	Throat Pressure:	$P_T := P_c \cdot \left(1 + \frac{k - 1}{2}\right)^{\binom{k - 1}{2}} = \left(1.966 \cdot 10^6\right) Pa$

Nozzle

ANSYS Fluent Verification

Y Z X

Visual Representations

Interfacing

Nozzle

Implementation Plans

- COTS
- Graphite Nozzle

Estimated Cost

• 2 Nozzles - \$ 350 each

Schedule

Two+ weeks from order to delivery, material lead time may extend timeline

Ablative Thermal Liner

Approach

- SRAD Phenolic Fiberglass
- ~33 inches long, subject to change
- ~0.125" thick
- Integrates with nozzle and injector to contain combustion

Ablative Thermal Liner

Options Considered

- G-10
- Fibrous Refractory Composite
 Insulation (FRCI)
- Lamitex XX
- Lamitex CE

Notes

- G-10, XX, and CE share same manufacturer and 94HB Flammability Rating
- Lamitex prices through quotes

Option Information

Product	Type of Material	Tensile Strength	Highest Rated Temp.
G-10	Fiberglass	38000-65000	140C (284F)
Fibrous Refractory Composite Insulation (FRCI)	Ceramic Composite	876 PSI (Flexural)	1540C (2804F)
Lamitex XX	Phenolic Paper Composite	18850 PSI (Flexural)	140C (284F)
Lamitex C	Cotton Phenolic Composite	13500 PSI (Flexural)	125C (257F)

Ablative Thermal Liner

Strength Information for 0.125" Sheets

Product	Flexural	Tensile	Compressive
G-10	LW: 55 kpsi CW: 45 kpsi	LW: 40 kpsi CW: 32 kpsi	FW: 68 kpsi EW: 35 kpsi
Lamitex XX	LW: 15 kpsi CW: 14 kpsi	LW: 16 kpsi CW: 13 kpsi	FW: 34 kpsi
Lamitex CE	(.062") LW: 17.5 kpsi CW: 15.5 kpsi	(0.125") LW: 11 kpsi CW: 9 kpsi	(.5") FW: 34 kpsi

LW: Lengthwise, CW: Crosswise, FW: Flatwise, EW: Edgewise

Questions?

Knights Experimental Rocketry UCF

Payloads System Concept Review

Spaceport America Cup 2024

IREC 30k SRAD Hybrid Engine, Experimental Payloads, and Airframe

10/30/23

Knights Experimental Rocketry UCF

Payloads System Organization Chart

Payloads System Breakdown

Proposal Solicitation

Background	3
Objective	3
Proposal Preparation	3
Format	3
Cover Sheet (1 page)	4
Main Body (1-3 pages)	4
Appendix (1 page)	5
Submission	5
Evaluation	5

Concept #1: Ground Sampling Rover

Concept #2: Deployable Solar Panel

Concept #3: Topographic Mapping Drone

Concept #4: Advanced Research and Exploration Systems

Concept #5: Plasmon Resonance Powered Drone

Evaluation Criteria

The following criteria were used to evaluate each proposal concept Each criterion was assigned a 0–5-point value

- Difficulty (15%)
- Cost (25%)
- Presentability (20%)
- Functionality (25%)
- Schedule (15%)
- Regulations (Pass/Fail)

Proposal Selection Decision Matrix

Criteria	Weight	Team 1	Team 2	Team 3	Team 4	Team 5
Difficulty	0.15	1	3	3	1	2
Cost	0.25	1	4	2	0.5	5
Presentability	0.2	4	3	3	5	5
Functionality	0.25	3	3	1.5	1	3
Schedule	0.15	1	5	3	0	1
Regulations	Pass/Fail	Pass	Pass	Pass?	Pass?	Pass
Weighted Score	9	2.1	3.55	2.375	1.525	3.45

Proposal #2 was selected as the IREC 2024 payload

Payloads System CONOPS

Payloads System Interface Diagram

Total Payloads System Requirements

Requirement	Verification Method 🗠
The Total Payloads System shall consist of an Experiment System and a separate Flight Recording Sub-System.	Inspecion
The Total Payloads System shall fully fit inside the Aero-Structures System.	Inspection
The Total Payloads System shall be fully designed by the first week of February 2024.	Inspection
The Total Payloads System shall be entirely procured by the last week of February 2024.	Inspection
The Total Payloads System shall have been fully verified through testing by the last week of April 2024.	Inspection
The Total Payloads System shall be designed, manufactured, tested, and validated within a budget of [\$1,600.]	Inspection
The Total Payloads System shall reserve [\$400] for overhead and emergency purchases.	Inspection
The Total Payloads System shall be safely operable.	Demonstration
The Total Payloads System shall be designed and integrated such that it does not jeopardize the overall Vehicle's safety.	Demonstration
The Total Payloads System shall operate in temperatures above [-47.2 °C] and below [110 °C].	Demonstration
The Total Payloads System shall survive [11 Gs] of acceleration.	Demonstration

Experiment System Requirements

Requirement	Verification Method 🗠
The Experiment System shall consist of Mechanical, Electrical, and Software Sub-Systems.	Inspection
The Experiment System shall have a weight of [9] lbs.	Inspection
The Experiment System shall have a CubeSat factor of [4U].	Inspection
The Experiment System shall have dimensions of [10 cm] diameter by [41.32 cm].	Inspection
The Experiment System shall remain independently powered for [1 hour].	Test
The Experiment System shall interface with the Aero-Structures system.	Inspection
The Experiment System shall withstand impact with the ground at [30] ft/s.	Test
The Experiment System shall be easily removeable from Aero-Structures System for inspection by ESRA judges.	Demonstration
The Experiment System shall fit inside [16.3] inches of the Airframe Upper Body Tube.	inspection
The Experiment System shall be deployed adjacent on the Main Parachute's Shock Cord.	Demonstration
The Experiment System shall be powered via cable connection by the Avionics Service System until Main Parachute Deployment event.	Test
The Experiment System shall send data via cable connection to the Avionics Service System until Main Parachute Deployment event.	Test
The Experiment System shall receive data via cable connection from the Avionics Service System until Main Parachute Deployment event.	Test
The Experiment System shall separate from the harnessing of the Avionics Service System upon Main Parachute Deployment event.	Demonstration
The Experiment System shall collect and store solar energy in a separate dedicated battery bank.	Demonstration
The Experiment System shall collect and store a solar energy amount of [TBD Watts].	Test
The Experiment System shall be designed, manufactured, tested, and validated within a budget of [\$1,200].	Inspection
The Experiment System shall orient the Solar Panel within [5] degrees towards the Sun's direction.	Test
The Experiment System shall be deployed in such a way that it does not put spectators in direct harm.	Demonstration

Payloads Systems Technical Performance Measures

Measure	TPM Value	Units	Verification Method
Experiment Weight	[9 lbs]	Pounds	Inspection
Volume	[4 U]	CubeSat Units	Inspection
Length	[16.3 in]	Inches	Inspection
Min Temp	[-47.2 °C]	Fahrenheit	Demonstration
Max Temp	[110 °C]	Fahrenheit	Demonstration
Max Impact Speed	[30 ft/sec]	Feet per Second	Demonstration

Payloads Systems Cost

Subsystem	Estimated Cost
Mechanical	\$600
Electrical	\$300
Software	\$300
Flight Recording	\$400
Overhead	\$400
Total	\$2000

Payloads Systems Verification Plans

Inspection on Machined Parts		FEA on Payload Housing		Battery Longevity		Solar Panel power generation test		Software-In- The-Loop for all Systems	
Camera Stitching occurs AFTER launch		Hardware-In- The-Loop for all Systems (with Avionics)		MQD testing		Drop Test		Snatch Force Test	
Payload Dry Fit		Weight Inspection		Shock and Vibration Testing*		Temperature Test			

Mechanical Sub-System

A prototype of the outer housing

Exploded view drawing of the entire mechanical system

Mechanical Requirements

Requirement	Verification Method	Requirement	Verification Method
The mechanical subsystem shall weigh [8.8 lbs]	Inspection	The mechanical subsystem shall have a [system of lead screws] to get the solar panel outside of the main body after landing as	Test
The mechanical subsystem shall have a [sliding door] to	Demonstration	well as orient solar panel for tracking the sun	
protect the solar panel during launch and during adverse weather			Test
The mechanical subsystem shall have a self-	Inspection	The mechanical subsystem shall have a motor driven orientation system that rotates the inner cylinder to ensure correct positioning for operation	
middle section in order to stay stabilized upon landing			
The mechanical subsystem shall have an offset weight to initially orient the housing	Inspection	The mechanical subsystem shall have a self-cleaning system to clean off the solar panel	Demonstration

Mechanical TPMs

Measure	TPM Value	Units	Verification Method
Mass	[TBD]	lbs	Inspection
Length	[40]	cm	Inspection
Volume	[4000]	cm^3	Inspection
Power Draw	[12]	Volts	Testing

Mechanical Interface Diagram

Mechanical Component Breakdown

Housing

Exterior shell for the experiment which shall house all components

Possible Points of Failure

- Housing breaks upon impact
- Housing breaks upon receiving force from shock cord connection
- Housing breaks mid-flight

Housing

Verification Method
Toet
1631
Inspection
Inspection

Measure	TPM Value	Units	Verification Method
length	!	cm	Measurement
diameter	[9]	cm	Measurement

- Materials currently being considered for the door are:
 - Polyamide
 - Acrylonitrile Butadiene Styrene(ABS)
 - Polyethylene terephthalate glycol(PET-G)
 - Aluminum

Requirements

The housing door **shall** be able to protect the payload components during landing

The housing door **shall** be able to open and close easily to protect the components during adverse weather

The housing door shall minimize debris entering the payload

The housing door **shall** be able to provide clearance for the panel to deploy once landed

The housing door **shall** stay open while panel is deployed

The housing door shall be [40 cm] long and have an arc length of [4 cm]

The housing door shall weigh [1 lb]

Before our final design these were some options considered:

Design we went with adds another degree of freedom upon the payload's rotation by putting the panel on the flat side of the door

Possible Points of Failure:

- Damage upon landing impact
- Failure in motor to provide enough torque
 to rotate door and expose panel
- Weight of the top side of the door throws off motor calculations and doesn't align towards the sun.

Self-Orientation

Requirement	Verification Method
The self-orientation mechanism shall have a stationary outside while rotating the inner components with a [type of motor]	Inspection
The self-orientation mechanism will be able to track the sun along a rotating axis to aid with the solar orientation	Test
	Inspection
The self-orientation mechanism shall be driven by [TBD] motors	

Self-Orientation

Possible Points of Failure:

- Misalignment of internal gear system upon landing
- Failure of motor to apply enough torque to rotate payload
- Self-orientation subassembly causes Panel Orientation subassembly to fail because of unaccounted for rotation.

Measure	TPM Value	Units	Verification Method
Torque	77.571	lb-ft	Analysis
Angle of Rotation	90	degrees	Demonstration

Solar Panel Deployment and Orientation

We considered a few designs such as

- Scissor Lift
- Linear Actuator
- Mechanical Arm with Ball Joint

We decided to use a lead screw system that would double as a deployment mechanism and an orientation mechanism through pivoting

Solar Panel Deployment and Orientation

Possible points of failures:

- Not fully extending upon deployment
- Rotation in the pivot legs
- Incorrect movement in the stepper motor
- Not orienting correctly

Requirements	Verification Method
The solar orientation assembly shall be able to move the panel toward any given direction	Inspection
The deployment mechanism shall have a [TBD] base that accounts for the solar panel	Inspection
The deployment mechanism shall have 2 leadscrews running in parallel to allow the panel to lift and tilt along an axis	Inspection
The solar panel deployment and orientation mechanism will drive lead screws with [2 Stepper] motors	Inspection

Solar Deployment and Orientation

Measure	TPM Value	Units	Verification Method
Length of connecting rod (<i>I</i>)	[11.811]	in	Inspection
Length of solar panel (/ _{sp})	[7.874]	in	Inspection
Screw lead (<i>k</i>)	[0.495]	in/rad	Inspection
Mass	[TBD]	lbs	Analysis
Torque	[9.63]	lbs/in	Analysis

$$y = \sqrt{\ell^2 + (k\theta)^2}$$
$$\theta_n = \tan^{-1} \left(\frac{\ell_{sp}}{|y_2 - y_1|} \right)$$
$$= \tan^{-1} \left(\frac{\ell_{sp}}{\sqrt{\ell^2 + (k\theta_2)^2} - \sqrt{\ell^2 + (k\theta_1)^2}} \right)$$
$$\ell_{window} = \ell_{sp} \cdot \sin(\theta_n)$$

- v sp

KNIGHTS EXPERIMENTAL ROCKETRY

www.kxrucf.com | 12760 PEGASUS DR, BLDG 40 ROOM 307, ORLANDO, FL 32816

 θ_{n}

Self-Cleaning Mechanism

- The solar panel will have some form of cleaning itself to theoretically survive long missions without maintenance
- The most prospective manner to do so currently, is through electrostatic discharge

Mechanical Path Forward

- Making the full CAD
- Test further prototypes
- Finalize the designs

Electrical Sub-System

Electrical Functional Requirements

Requirement	Verification Method
The electrical subsystem shall have a power source independent of the photovoltaic panel and battery experiments that will supply power to the payload	Demonstration
The electrical subsystem shall include a circuit connected to the photovoltaic panel with a voltmeter, ammeter, and an empty dischargeable capacitor that will act as energy storage	Demonstration
The electrical subsystem shall facilitate the exchange of data between all components of the payload	Demonstration
The electrical subsystem shall have a system of voltage regulation	Test

AL ROCKETRY

Electrical Interface Diagram

Electrical Component Breakdown

Electrical Component Requirements

Solar Panel Requirements	Verification Method
The solar panel shall be stored and released from within the payload	Demonstration
The solar panel shall produce [TBD] amount of energy	Demonstration
The solar panel shall cost a maximum of [TBD] dollars	Inspection
The solar panel shall follow the sun's path throughout the day	Test
The solar panel should have a self-cleaning function	Test
Battery Requirements	Verification Method
The batteries shall be stored within the payload	Demonstration
The power supply shall produce [TBD] amount of energy	Test
The power supply shall cost a maximum of [TBD] dollars	Inspection

Solar Panel Trade Study

Criteria	Weight	Monocryst. Silicon	Polycryst. Silicon	Amorphous Silicon	CdTe	CIGs
Cost	.25	2	3	5	5	4
Schedule	.25	4	4	4	4	4
Risk	.25	4	4	2	1	1
Performance	.25	5	4	1	3	2
Weighted Scores		3.75	3.5	3	3.25	2.75

- Researched Monocrystalline and Polycrystalline Panels, Cadmium Telluride, Amorphous silicon, and Copper Indium Gallium Selenide panels
- Our final choice was to use
 Monocrystalline Panels

Battery Trade Study Decision Matrix

Criteria and Weights		Options and Scores			
Criteria	✓ Weight ✓	LFP	NiMH	Lead Acic ~	Alkaline
Cost	0.25	3	5	5	5
Schedule	0.25	5	3	5	5
Risk	0.25	3	3	3	1
Performance	0.25	5	3	3	1
Weighted Scor	es	4	3.5	4	3
(3)					

Top two choices from decision matrix were the Lithium-ion Phosphate Batteries (LiFePO4 or LFP) and the Lead Acid Batteries. Lead Acid Batteries were forbidden by ESRA, so LiFePO4 Batteries were the final choice.

Preliminary Solar Panel Circuit Design

Lithium-Ion Phosphate Battery

Type of Battery	Pros	Cons	Pictures
LiFePO4	 Expected cycle life of 3000 – 10,000 cycles 98% efficient (when you put 100 AH into an LFP battery, you get about 98 Ah back out) Short absorb time Operates between 32°F and 120°F, with little degradation Very lightweight 	 Will cost about twice as much as an equivalent high quality AGM battery Will have a very small reserve capacity (about 20%) designed into the bank Subject to damage if over or under charged 	POSITIVE ELECTRODE (ALUMINUM FOIL) POA (PHOSPHATE) PCA (PHOSPHATE) (COPPER FOIL) PCA (PHOSPHATE) PCA (PHOSPHATE) PCA (PHOSPHATE) (COPPER FOIL) PCA (PHOSPHATE) (COPPER FOIL) PCA (PHOSPHATE) (COPPER FOIL) (COPPER FOIL) (C

Electrical Path Forward

- Determine exact voltage and current specifications for the power supply
- Create a detailed circuit schematic for the entire payload
- Decide on specific components to purchase

Software Sub-System

Software Requirements

Requirement	Verification Method
The software subsystem shall interface correctly with other subsystems	Inspection
The software subsystem shall orchestrate the mission to completion	Test
The software subsystem shall track the sun in the sky	Test
The software subsystem shall orient the payload upright	Test
The software subsystem shall record experimental data starting from launch	Test
The software subsystem shall track the payload after launch time	Test

Software TPMs

Measure	TPM Value	Units	Verification Method	
Solar panel orientation	[5°]	Degrees	Test	
GPS position accuracy	[5%]	Percent	Test	
IMU accuracy	[5%]	Percent	Test	
Execution speed	[240MHz]	MHz	Inspection	

Software Interface Diagram

Software Component Breakdown

A study on which microcontroller family was to be used for the software system paired with an MPU9250 inertial measurement unit and possible long-range transmission.

Options considered:

ESP32

STM32

Arduino

Option 1: ESP32

Pros	Cons
\\/iroloco	
wireless	
Can act as a server	
Extendable internet connection (1km unobstructed through 802.11LR mode)	
Not IDE specific	
Widely Used	
Bluetooth	

Option 2: STM32

Pros	Cons
Wireless support	No Long range wireless standard
Not IDE specific	Not compatible with HC-12 module
Bluetooth	Very limited long-range ecosystem
Widely used	Not widely used for long range

Option 3: Arduino

Pros	Cons		
Widely used	Arduino IDE required		
RF module gives 1.8km	Hard wire connection to upload code		
	Requires Long range RF module		
	Questionable Antenna geometry		

Decision matrix

Criteria and Weights		Options and Scores			
Criteria	~ Weight ~	STM32	Arduino 🗠	ESP32 ~	
Cost	0.25	1	3	5	
Schedule	0.25	5	5	5	
Risk	0.25	5	5	5	
Performance	0.25	1	3	5	
Weighted Scores		3	4	5	

The ESP32 paired with the MPU9250 Inertial Measurement Unit, and possible NEO-8M GPS module was decided.

Microcontroller Component PDR

Microcontroller Component PDR

Microcontroller Failure Modes:

- Physical damage
 - Damage on impact could render communication issues between components or damage to components
- Possible component miscommunication
 - If an incorrect reading is given by the IMU the solar orientation algorithm will be wrong
 - If the Experimental Camera is wired incorrectly or returning the wrong data format that could corrupt all visual data storage/processing
 - If incorrect time is returned by the clock the solar orientation algorithm will be wrong

Software Path Forward

- Decide on exact components
- Compile all documentation for components
- Acquire a test-bed to start developing algorithms

Flight Recording Sub-System

• 360 Camera System

444

 Quick Disconnect (QD) Real-Time Camera

QD CAM

ųŢ

www.kxrucf.com | 12760 PEGASUS DR, BLDG 40 ROOM 307, ORLANDO, FL 32816

Flight Recording Interface Diagram

Flight Recording Component Breakdown

Flight Recording Requirements

Should be tables including requirements and verification methods

Requirement	Verification Method
The 360-degree camera system shall capture synchronized footage from [4] cameras	Demonstration
The QD camera shall capture and transmit live footage of the QD connector	Demonstration
The 360-degree camera system shall weigh [TBD lbs]	Inspection
The 360-degree camera system shall weigh [TBD lbs]	Inspection
Both camera systems shall interface with the aerostructures system	Inspection
Both camera systems shall withstand [10 G] of acceleration	Demonstration

Flight Recording TPMs

Measure	TPM Value	Units	Verification Method						
Quick Disconnect Camera System									
Resolution	[1080p]	Pixels	Test						
Framerate	[30fps]	Frames per second	Test						
Field of View	[90°]	Degrees	Test						
360-Degree Camera System									
Resolution	[1080p]	Pixels	Test						
Framerate	[30fps]	Frames per second	Test						
Field of View	[90°]	Degrees	Test						

Camera Trade Study

The Top Two According to the decision Matrix were the Raspberry PI Cameras:

Arducam Camera for Raspberry Pi

Pros: Cheap, Field of View (120°(D)x88°(H)x55°(V)), 1080p Cons: Rolling Shutter, 30 fps Raspberry Pi Global Shutter Camera + Wide Angle Lens

Pros: Global shutter, con record 1440 x 1080 pixels at 60 fps Cons: 63 degree angle lens, more expensive

Camera Trade Study

Looked at 6 different options: 4 stand-alone cameras & 2 Raspberry PI cameras

Criteria and Weights		Options and Scores					
Criteria	Weight	AKASO Action	Estes AstroCam	RunCam2	Mobius Pro Mini I	Raspberry Pi	Global Shutter
Cost	0.35	3	5	3	3	5	3
Schedule	0.1	5	5	5	5	5	5
Risk	0.2	3	1	3	3	5	5
Performance	0.35	3	1	5	5	3	5
Weighted Scores		3.2	2.8	3.9	3.9	4.3	4.3

4.3

Flight Recording Path Forward

- Make a final camera selection
- Procure components and begin test-bedding both camera systems
- Create CAD

