

October 23rd, 2023 FAR10k Preliminary Design Review

- Introduce Guests
- Introduction
- Vehicle Design
- Payloads Design
- Propulsion Design
- Aerostructures Design

KNIGHTS EXPERIMENTAL ROCKETRY at UCF

Questions at the end of every section

Preliminary Design Purpose

Communicate top-level designs to establish a viable concept

Clear up misunderstandings between engineers and stakeholders

Identify problems or concerns to overcome

Establish baseline architecture

Ensure the designs can satisfy requirements under allocated budget and schedule

- Maintain Professionalism
- Presenters: Say your name, be clear, concise, speak slowly
- 165 slides total, around 2.5 hours
- Brief Questions for breaks/intermissions
- Kind and constructive feedback (3 weeks of design)
- Speaker Queue by the door

Concept Definition: The Mission

- FAR51025 Contest
 - Point Based Competition
 - Mojave, California
 - May 31st
- DPF 2023
 - Dynamic Piston Liquid Bi-Propellant to ~5,000ft
- FAR 2022
 - 1st, 2nd, 3rd place
 - ~5,000ft solid motors with deployable payloads

Score Guide

FAR 51025 Scoring This will aid teams in how the scoring works for the competition.

Altitude: a point is awarded for every foot of altitude reached up to the target of the division entered. A point is deducted for every foot of altitude over the division target. Example, a rocket entered in the 10,000' division that reaches 9,500' would receive 9500 points and a rocket that reaches 10,500' would receive 9,500 points to their score. New Unlimited, team picks target altitude (different scoring metrix)

Motor type: Acknowledging the increased difficulty of experimental motor design, construction, and testing, additional points are added for their use in the rocket Changes for 2023: experimental solid motors an additional (10% of altitude reached) points added to the score, experimental hybrids an additional (20% of altitude reached) points and experimental liquids (30% of altitude reached) points. Commercial hybrids or liquids will receive 500 points.

2-stage rocket: An additional 1,000 points are given for teams competing in the 25,000' division that does so with a 2-stage rocket.

Water ballast nose cone: Many people use heavy materials for ballast to stabilize rocket flight. An additional 1,000 points are given to any team demonstrating the successful use of a nose cone containing 500 mL of water for ballast and safely releasing the water into the air at or near apogee.

Build video or photos: 500 points will be added to the team score for a 2 minute video of the team's build or 25 photographs and submitted Change for 2023: one week prior to arrival at the FAR facility.

Payload options, changes for 2023, points award for successful mission completion

1000-points: Remotely Radio-Controlled Rover. Changes for 2023: Rocket must deploy a rover that leaves the rocket and travels a minimum of 10-feet after touchdown with live video on the ground from the rover to the receiving station till. Rover can be deployed separately from the rocket in the air on a parachute or after landing.

3000-points: Autonomous rover: A rover that returns autonomously to FAR designated area with live video. New for 2023: 2,000 points if memory card used instead of live video.

1000-points: Remote Sensing. Changes for 2023: After landing, a remote video camera will record the landing surroundings in a 360-degree horizontal panorama for transmission to launch control. 1000-points: Reconnaissance. Glider deployment below 400' on rocket descent with live video transmission. New for 2023: 1,000 points for memory card video instead of live video if glider returns to FAR designated landing area for memory card retrieval.

2000-points: Reconnaissance Return. Release of drone below 400' altitude or after landing with live video during drone return to a FAR designated location by autonomous or remote control. New for 2023: 1,000 points if video memory card used instead of live video.

500-points: Remote Sensing. Rocket must transmit live video from liftoff to touch down. Live video must be seen by judges and or recorded by the ground launch area receiving station for later viewing.

500 additional points New changes for 2023: for a user defined scientific payload that is contained in a 0.5 to 3 U CubeSat, Pocket Cube (5cm*3) or CanSat form factor. Prior approval required.

New for 2023: points for on board video source recorded to a memory card during the flight must be received by judges or downloaded the day of the flight to rocketrycontest@gmail.com

Live video must be witnessed by a judge and recorded at the ground launch area receiving station. Ground station recording of live video can be done on memory card or cell phone video of screen. *Points are awarded for successful payload mission completion.*

Challenge Selected	Points Possible
10,000 ft Altitude	10,000
SRAD Liquid Propulsion	3,000
Water Ballast	1,000
Build Video	500
Remotely Controlled Rover	1,000
Reconnaissance Return Drone	2,000
Remote Sensing Camera	500
Total Points	18,000
Max Possible Points	23,500

Stakeholder Definition

The members of our team

- Cultivate a passion for science, technology, and space exploration

- Develop skills that prepare students for the professional industry

10

Friends of Amateur Rocketry Officials

- Point scoring system and rules

KXR Executive Board

- Funding
- Outreach
- Misc. Support
- Technical Oversight

Organization Chart

Team Demographics

- Team: 96 students
- Managers: 4
- Leads: 20

Year in College

• Component REs: ~50

Vehicle Requirements and TPMs

Requirement

The Vehicle shall launch to 10,000 feet.

The Vehicle shall be launched using liquid propulsion

The Vehicle shall withstand all flight loads

The Vehicle **shall** be stable during ascent duration.

The Vehicle **shall** be recovered in acceptable condition.

The Vehicle **shall** deploy rover and drone payloads on touchdown.

The Vehicle shall withstand ambient temperature of the desert environment.

The Vehicle shall interface between external ground support equipment (GSE) and FAR launch facility equipment

Performance Measures			
Altitude	10,000-16,148 ft		
Impulse	16,534 Ns 3,710 lbfs		
Velocity	Mach 1.08		
Max Acceleration	5.89 g		
Stability	2.18 cal		
Mass	79.4 lb		
Thrust to Weight	6.6		
Length	14 ft		
Diameter	6.2 in		

at UCF

Vehicle CONOPS

Vehicle Architecture

Vehicle Interface Diagram

Launch and Test Infrastructure Cont.

Avionics Control Board (ACB/ASS)	Propulsion Control Board (PCB^2)	Ground Station
Wired Power and Data Ports	Power to Sensors, Actuators	Fills Nitrogen and Nitrous Oxide
Wired connection to Cameras	Wired Commands to Actuators	Receives Live Telemetry and Video from ACB
Wireless Transmission of Live Video to Ground Station	Wired connection to GS	Receives Live Video from Drone/Rover
Wireless Transmission of Telemetry to Ground Station	Stores data locally	Sends wired commands to PCB^2 and ACB
Magnetic Power Connector	Magnetic Power Connector	

Total Vehicle Budget: \$13,000

Estimated System Breakdown

- Propulsion: \$6,000
- Aerostructures: \$4,500
- Payloads: \$2,500

Sources of Funding

- UCF SG: \$5,000
- KXR UCF: \$5,000
- FSGC: \$3,000

Schedule: 9 Months

PI-1: Concept Dev and Design September – December	Explore Concepts, Develop Team Structure, Create the final design	
3 months	Concept Exploration, Design Phase, PDR, SRR, and CDR, approve budget	
PI-2: Procurement and Manufacturing	Procure throughout winter break	
December – March 3 months	Manufacturing, Simulation Verification, Machining, Assembly, and travel	
PI-3: Testing and Launch March – June	Begin Testing campaign, integration of systems, small changes and interation	
3.5 months	Travel to Mojave and Launch	

Schedule: PI 1

PI-1: Concept Development and Design (August – December)

•	Preplanning	(Aug. 1st –31st)
•	Vehicle Concepts Design	(Aug. 15th - 31st)
•	Concept Development and Learning Phase	(Sprint 1,2)
•	System Requirements Review	
•	Preliminary Design	(Oc <mark>t:</mark> Sprint 3,4,5,6)
•	Preliminary Design Review	(Oct. 23th)
•	Detailed Design	(Oct <mark>-Nov:</mark> Sprint 4,5,6)
•	Sub-System/Component Requirements Review	(Mid-Nov.)
•	Critical Design Review	(End of Nov.)
•	Begin Procurement	(Dec: Sprint 7)
•	End of PI-1	(December)
		More details in SEMP

Verification Plans

- 1. System Verification Testing
- 2. Vehicle Dry Fit Test
- 3. Wet Dress Rehearsal
- 4. Launch Day Verification testing
- 5. Flight Demonstration

Questions?

- From Eboard and Industry Guests
- Pertaining to Vehicle Level only
- 7 minutes questions

October 23rd, 2023 Payload Preliminary Design Review FAR10k Liquid Rocket

Payload Functional Requirements

System	Requirement	Requirement Type	Verification Method
Payloads	The Payloads System shall have a weight no more than [9] lbs	Performance	Inspection
Payloads	The Payloads System shall have a maximum length of [2.5] feet.	Performance	Inspection
Payloads	The Payloads System shall have a outer diameter less than [6] inches.	Performance	Inspection
Payloads	The Payloads System shall consist of [mechanical] and [electrical] subsystems.	Functional	Demonstration
Payloads	The Payloads System shall remain actively powered for [15] minutes	Performance	Test
Payloads	The Payloads System shall remain passively powered for [3] hours	Performance	Test
Payloads	The Payloads System shall have a mechanical interface with the Aerostructures system.	Interface	Demonstration
Payloads	The Payloads System shall impact the ground less than 30 ft/s	Performance	Analysis

Payload Architecture

Payloads Tube Assembly

Payloads Tube Assembly

Payload Interface Diagram

Payload CONOPS

Payload Cost

Payload	Cost	
Payloads Tube	\$[200]	RIMENTAL ROCKETRY
Rover	\$[410]	
Drone	\$[500]	
Remote Sensing	\$[120]	
GSE	\$[400]	at UCF
Buffer	\$[300]	
Total	\$[1930]	4

Payload System Verification Plans

- Overall Payloads Tests (Demonstration)
- Finite Element Analysis (Analysis)
- Drop Tests (Demonstration)
- Torsional Rigidity Test (Demonstration)
- Ball Pin and Tuft Tests (Demonstration)
- Vibration and Shock Tests (Demonstration)
- Connectivity / Transmission Check (Inspection)

Payload System Risks

- Self-orienting mechanism
- Mechanical failure
- Tread slip/snap
- Battery Failure
 - Short circuit
 - Overheating
- Transmitter Interference
- Electric Failure
 - Latch Deployment

Rover Functional Requirements

System	Sub-System	Requirement	Туре	Verification Method
Payloads	Rover	The Rover shall deploy from rocket at 800 ft with the main parachute	Interface	Test
Payloads	Rover	The Rover shall detach from payload tube on touchdown	Functional	Demonstration
Payloads	Rover	The Rover shall travel a minimum of 10 feet after landing	Performance	Demonstration
Payloads	Rover	The Rover shall be remote controlled	Functional	Demonstration
Payloads	Rover	The Rover shall have live video	Functional	Demonstration
Payloads	Rover	The Rover shall attach to the Drone	Functional	Demonstration
Payloads	Rover	The Rover shall detach from the Drone	Functional	Demonstration

Rover Component Breakdown (Architecture)

Rover Subsystem

Top of Rover (Top View)

Rover Subsystem

Rover TPMs

Measure	TPM Value	Units	Verification Method
Assembly Dimensions	18" x 4.64" x 2" (LxWxH)	in	Inspection
Weight	[1]	lbs	Inspection
Operating Time	[1.03 - 1.60]	hours	Analysis
Passive Power Draw	1405 - 2165	mA	Analysis

Rover Interface Diagram

Rover CONOPS

The Traversal System, or "Treads" provides propulsion to the rover, and consists of:

- Tank Tracks (SRAD)
 - Cables + Tread Piece Assembly
 - Treads are made of PVC
- Molded Plastic COTS Gears
- Metal Drive Axles from VEX robotics
- Fasteners & Nuts

- Chassis
 - 7"x4.64"x2" (LxWxH)
 - Frame is made of Unistrut
 - Aluminum sheets are bolted on the top and bottom

• Trailer

- 11"x3.5"x1.25" (LxWxH)
- Attached permanently to rover
- Frame is made of Unistrut
- Aluminum sheets are bolted on the top
- COTS wheels
- Used to drag and hold drone until drone deployment

Attach/Detach Latch

- Attach/Detach Latch Responsible for holding and releasing the drone from the trailer.
 - Servo
 - 3D Printed Latches
 - 1/4" 12-inches Aluminum Rod

Not to Scale Drone

 Servo
 Latches

 Rover
 K

- Battery
 - Lumenier 2250mAh 4s 35C LiPo (14.8V Large Capacity)
 - Battery will be supplied with splitters and a power distribution board

- Visual Transmitter
 - Lumenier LUX Mini VTX (380mA at 800mW. 5.8GHz)

Camera

 Runcam Nano2: (Low Drain 155° FOV)

- Microprocessor
 - Arduino UNO Rev 3 (Basic IO Pin Selection)
 - Note: The Arduino is not the centralized power source for rover electrical components.

- Motors
 - Arthur 3650k
 Brushless DC:
 1.1A (Smaller than traditional 1408)

• Lumenier 30A BLHeli_S

at UCF

- GPS
 - GOKU GM10 Mini V3 (32 Satellite Channels lightweight)
- Receiver
 - Happy Model EP1 RX ELRS: (Low Drain ELRS Module)

Rover Wiring Diagram

Drone Functional Requirements

System	Sub-System	Requirement	Туре	Verification Method
Payloads	Drone	The Drone shall deploy from rocket at 800 ft with the main parachute	Performance	Test
Payloads	Drone	The Drone Shall detach from the rover trailer after exiting payload tube	Functional	Demonstration
Payloads	Drone	The Drone shall be remote controlled	Functional	Demonstration
Payloads	Drone	The Drone shall have a video recording the landing surroundings	Functional	Demonstration
Payloads	Drone	The Drone shall attach to the Rover	Functional	Demonstration
Payloads	Drone	The Drone shall detach from the Rover	Functional	Demonstration
Payloads	Drone	The Drone shall return to designated drop off area	Performance	Demonstration

Drone Component Breakdown (Architecture)

KXRUCF

Drone Subsystem

Drone Subsystem

Drone Subsystem

Drone TPMs

Measure	TPM Value	Units	Verification Method	
Assembly Dimensions	9.5 x 4.65 x 2 (LxWxH)	in	Inspection	CVETD
Weight w/o Electronics	[0.44]	lbs	Inspection	
With w/ Electronics	[0.88]	lbs	Inspection	
Active Operating Time	[0.32 - 0.33]	hours	Analysis	at UC
Passive Power Draw	[4300 – 5125]	mA	Analysis	

Drone Interface Diagram

Drone CONOPS

• Arms:

- There will be four arms attached to the airframe.
- Made of carbon fiber
- 3D Printed

Propellers:

- We decided for toroidal type propellers in due to studies we found showing that they had an increased level of efficiency compared to standard propellers.
- Resin printed

- Electrical Housing:
 - Houses all electronics
 - Perforations in housing for airflow
 - Electronics will be stacked
 - Made from printed carbon fiber

- Drone Airframe:
 - The dimensions were chosen due to size constraints.
 - Made of printed carbon fiber

- Flight Controller
 - SpeedyBee F405 Mini 20x20 (Compact centralized stack)
 - Note: Battery and operations are centralized through the flight controller

- Battery
 - Lumenier 1800mAh 3s 35C (High Capacity Lightweight)
 - Battery is scalable to mission requirements

- Electronic Speed Controller
 - SpeedyBee F405 Mini BLS (Stackable 4 in 1 ESC)

EXPERIMENTAL ROCKETRY

- Camera
 - RunCam Pheonix 2 Nano (Highest Quality 155° FOV)

- Visual Transmitter
 - Rush Tank II (380mA at 800mW, 6s capable)

- Receiver
 - Happy Model EP1 RX ELRS: (Low Drain ELRS Module)

- Motors
 - SpeedyBee 4500KV (Lightweight 1404 Motors)

• GPS

 GOKU GM10 Mini V3 (32 Satellite Channels, lightweight)

at UCF

Drone Wiring Diagram

Remote Sensing Functional Requirements

System S	Sub-System	Requirement	Туре	Verification Method
Payloads F	Remote Sensing	The Horizon Camera shall operate throughout flight	Performance	Demonstration
Payloads F	Remote Sensing	The Fin Camera shall operate throughout flight	Performance	Demonstration
Pavloads F	Remote Sensing	The Horizon Camera shall save video locally	Performance	Demonstration
Pavloads F	Remote Sensing	The Fin Camera shall have live video sent to GSE and save locally	Functional	Demonstration

Remote Sensing (Architecture)

Remote Sensing Subsystem

<u>Fin Camera</u>

<u>Horizon Camera</u>

Remote Sensing TPMs

Measure	TPM Value	Units	Verification Method
Weight of System	[1 - 2]	OZ	Inspection
Diameter	6	in	Inspection
Height	2	in	Inspection
Video Storage	3	hours	Inspection
Power	5	V	Analysis
Operational Time	[4]	hours	Analysis

Remote Sensing Interface Diagram

Remote Sensing CONOPS

Fin Camera Components

Horizon Camera Components

Phoenix 2 RunCam

Questions?

Thank You for Listening!
Aerostructures PDR FAR10k Liquid Rocket

KNIGHTS EXPERIMENTAL ROCKETRY

Aerostructures System

Encompasses and integrates all systems Designed to withstand all aspects of flight Shall be recovered in a condition that can relaunch

PDR CAD and Open Rocket

Aerostructures Architecture

Aerostructures Interface Diagram

Aerostructures Functional Requirements

Requirement	Requirement Type	Verification Method
The Aerostructures System shall consist of recovery, [water ballast] subsystems.	Functional	[Inspection]
The Aerostructures System shall resist aerodynamic loads during the vehicle's mission.	Functional	[Analysis]
The Aerostructures System shall have a dual deploy recovery system.	Functional	[Inspection]
The Aerostructures system shall withstand a load of [6] G's	Performance	[Analysis]
The Aerostructures system shall have an internal diameter of 6 in	Performance	[Inspection]
The Aerostructures system shall have a max length of 15 ft	Performance	[Inspection]
The Aerostructures system shall resist a snatch force of [680 lbs.]	Performance	[Test/Analysis]

Aerostructures System Verification Plans

- Visual/Digital Inspection of System Interfaces (CAD)
- FEA and ANSYS Component Load Analysis (Analysis)
- Test Article (Test)
- Dry Fitting Components (Demonstration)
- Confirmation of Dimensions and Mass (Inspection)
- Dual Deploy Recovery System Test (Test)
- Launch

Aerostructures CONOPS

Aerostructures System Cost

Recovery Internal Structures External Structures Flight Dynamics/ Aerodynamic Structures

Aerostructures System Risk

- Failure to Recover
- Structural Failure During Flight
- Manufacturing Failure / Timeline
- Launch Site Conditions

Recovery Component Breakdown

Recovery Interface Diagram

Recovery Functional Requirements & TPM's

Measure	TPM Value	Unit s	Verification Method
Compressive Loads	1100	lbs.	Demonstration
Tension loads	679	Lbs	Demonstration
Size of Recovery compartment	[TBD]	ft^3	Inspection
Packing Length of Chutes	DC: 3"D x 5"L MC: 4"D x 11"L	in	Inspection
Descent Rate	D: [50] M: [20]	Ft/s	Test

Requirement	Requirement Type	Verification Method
The Recovery System shall have edundancy	Functional	Demonstration
The Recovery System shall be visible during descent	Functional	Demonstration
The Recovery System shall have a dual- deploy system	Functional	Inspection
The Recovery System shall create a safe controlled descent for the vehicle	Functional	Demonstration

Drogue + Main Chute

6 ft Drogue will deploy at apogee (delayed deployment if first altimeter fails)

- Compartment: L = 3.232 in; D = 6.043 in
- center of the rocket

12ft Main will deploy at 800 ft

- Compartment: L = 6.917 in; D = 6 in
- forward section of the rocket

6ft Standard Parachute Price: \$60.50 / Colors may vary	Add to Cart
Weight of parachute: 6.0oz	
Packing Volume: 3.0"D x 5.0L"= 35.34"^3	
Descent Rate:	
15ft/sec: 6.5lbs	
17ft/sec: 8.0lbs	
20ft/sec: 11.5lbs	
25ft/sec: 17.0lbs	
12ft Standard Parachute Price: \$155.00 / Colors may yary	
12ft Standard Parachute Price: \$155.00 / Colors may vary	Add to Cart
12ft Standard Parachute Price: \$155.00 / Colors may vary Weight of parachute: 17oz Packing Volumo: 4 0(T) x 11 01(T = 128, 22(4)2	Add to Cart
12ft Standard Parachute Price: \$155.00 / Colors may vary Weight of parachute: 17oz Packing Volume: 4.0"D x 11.0L"= 138.23"^3	Add to Cart
12ft Standard Parachute Price: \$155.00 / Colors may vary Weight of parachute: 17oz Packing Volume: 4.0"D x 11.0L"= 138.23"^3 Descent Rate:	Add to Cart
12ft Standard Parachute Price: \$155.00 / Colors may vary Weight of parachute: 17oz Packing Volume: 4.0"D x 11.0L"= 138.23"^3 Descent Rate: 15ft/sec: 24.0lbs	Add to Cart
12ft Standard Parachute Price: \$155.00 / Colors may vary Weight of parachute: 17oz Packing Volume: 4.0"D x 11.0L"= 138.23"^3 Descent Rate: 15ft/sec: 24.0lbs 17ft/sec: 33.0lbs	Add to Cart
12ft Standard Parachute Price: \$155.00 / Colors may vary Weight of parachute: 17oz Packing Volume: 4.0"D x 11.0L"= 138.23"^3 Descent Rate: 15ft/sec: 24.0lbs 17ft/sec: 33.0lbs 20ft/sec: 43.0lbs	Add to Cart

Sized for Specific Descent Rates

Shock Cords

- Connects Body Tube
 Segments during recovery
- Pulls out Payload during deployment

Recovery Coupler

Telemetry to facilitate communication during the recovery stage will be housed within the recovery coupler. To withstand the high forces experienced during launch and recovery, the coupler will be assembled from:

- Four ¼ inch rods, 1 caliber connection on each end
- COTS 6 x14 inch G12 Fiberglass Tube XPER
- 2 Bulkheads
- Carbon Fiber Switch band

Recovery Bulkheads

- Bulkheads
 - Made from G10 fiberglass
 - U-bolts (bought from McMaster) Black Oxidized Steel
 - Withstand snatch force: 679lbs of force
 - Black Powder charges on the bulkhead

Recovery Avionics (Altimeters)

- Fully dual redundant avionics system with independent batteries
- Missile Works RRC3 \$80
 - Length 3.92"
 - Width 0.925"
 - Weight ~0.6oz (17 g)
- AltusMetrum EasyMini \$80
 - Length 1.5"
 - Width 0.8"
 - Weight ~0.23 oz (6.52 g)
- Batteries: 2x 850MAH LiPO Battery
 - \$10 each

Recovery System Manufacturing

Bulkheads

- Made from G10 fiberglass
- Bulkheads will be designed through CAD. The drawing file will be sent to a fabrication center and produced from there
- U-bolts will be bought from McMaster

Internal Structures Subsystem

Internal Structures Component Breakdown

Internal Structures Interface Diagram

Internal Structures Functional Requirements & TPM's

Measure	TPM Value	Uni	Verification Method	
		ts		
Compression Load s	1100	lbs.	Analysis	The supp
Snatch Force	679	lbs.	Analysis	Гауі
				The
Ground Impact	[TBD]	lbs.	TBD	on th
Shear Force	[TBD]	lbs.	Analysis	The acce vehic
Bending Loads	[TBD]	lbs.	Analysis	The sepa reco
Torsional Loads	[TBD]	lbs.	Analysis	

Requirement	Requirement Type	Verification Method
The Internal Structures-System will support and protect the Propulsion and Payload systems	Functional	Analysis
The internal Structures Sub-System will withstand the loads and vibrations acting on the rocket	Functional	Analysis
The Internal Structures will allow easy access to the internal components of the vehicle	Functional	Analysis
The Internal Structures will allow separation between motor, payload and recovery section of the vehicle.	Functional	Inspection

Chassis

- Chassis will be composed of three sets of aluminum couplers connected by struts and attached to fluid system bulkheads and connections
- Will take on loads during flight such as snatch force, compressive loads, bending, and shear
- Connections with fluid systems will allow the tanks to handle the compressive loads and also act as centering rings
- Allows easy access to propellent Valves
- Material Cost Breakdown:

ltem	Description	Cost	Total
6061 Aluminum	1.500" Thick 8.000" Dia. X Precision Ground Blanks	\$11404	\$570.20
6061 Aluminum	0.375" x 1" Aluminum Rectangle Bar 6061-T6511- Extruded	\$4.50	\$54.00

Thrust Plate Assembly

- Thrust Plate will take on the forces experienced during launch and redistribute loads to the airframe.
- Struts will interface with the chassis, tanks. As well as the injector.
- Material Cost Breakdown:

ltem	Description	Cost	Total
6061 Aluminum	1.500" Thick 8.000" Dia. X Precision Ground Blanks	\$114.04	\$114.04

Bulkheads/Main Couplers

- G12 fiberglass couplers will join the propulsion section of the airframe with the rest of the aerostructure.
- G10 Bulkheads will be used to protect different sections of the airframe, such as the propulsion system, recovery, and payloads sections
- Material Cost Breakdown:

ltem	Description	Cost	Total
G12 Fiberglass Coupler Tube	6" Fiberglass Coupler	\$60.00	\$120.00
G10 Fiberglass Plates	6" Fiberglass round plate	\$13.01	\$26.02

Вау	
Fiberglass COTS Coupler	

Internal Structures Manufacturing

- Bulkheads
 - Material: G10 Fiberglass
 - Manufactured with CNC machine, post-processing as necessary
- Thrust Plate
 - Machined out of 6061 aluminum
- Chassis
 - Top and bottom plates: machined out of 6061 aluminum
 - Struts: machined out 6061 aluminum
- Main Couplers
 - Commercial of the shelf fiberglass couplers

KNIGHTS EXPERIMENTAL ROCKETRY

Airframe Component Breakdown

*Ext. Structures, Aerodynamic Structures, and Flight Dynamics Subsystems Merged for Leaner Architecture

Airframe Interface Diagram

Airframe Functional Requirements & TPM's

Measure	TPM Value	Units	Verification Method	
Compressive Loads	1100	lbs.	[Sim/Test]	Requirement
Tension Loads (Snatch)	679	lbs.	[Analysis]	The Airframe Sub-system will be optimized for transonic speeds
Bending Moment	[TBD]	ft-lb	[TBD]	The Airframe Sub-system will provide stability in flight
Vibrations	[TBD]	[TBD]	[TBD]	The Airframe Sub-system will
Temps	[TBD]	[TBD]	[TBD]	withstand flight loads
Ground Impact	[TBD]	[TBD]	[TBD]	

Requirement		Requirement Type	Verification Method
ne Airframe Sub-system will be otimized for transonic speeds		Functional	Analysis
ne Airframe Sub-system will ovide stability in flight		Functional	Analysis
ne Airframe Sub-system will thstand flight loads		Functional	Analysis

External Structures Lay-Up

- Using 3K 2x2 twill weave pre-preg carbon fiber
- Preliminary Stack up is 6 plies, using rolling technique
- Designing for about 1100.0 lbs. of compressive load on the airframe (G-loading & Drag Force) (See force calculator) (Bending force to be determined)

3k 2x2 Twill Weave

Thrust Compressive Force Bending Force Shear / Torsional Force

KNIGHTS EXPERIMENTAL ROCKETR

Nose Cone

- Von Karman Nose Cone
 - Well suited for trans-sonic regime
- Wet-Lay Fiberglass on 3-D Printed Mandrel
 - Using a combination of 6-inch and 2-inch dry fiber-glass sleeves and wet-laying with epoxy
 - ~ 5 ply lay up
- Aluminum Tip

ltem	Item Desc.	Cost	Qty.	Total Cost
Composite	6 in. FG Sleeves	7.34	7	51.38
Composite	2 in. FG Sleeves	2.73	7	19.11
Ероху	AdTech 820 Hardener	135 / gal	1	135.00
Ероху	AdTech 820 Resin	357 / 5gal	1	357.28
Aluminum	AI. Tip Stock	62.50	1	62.50
Total	-	-	-	625.27

$$egin{aligned} heta(x) &= rccosigg(1-rac{2x}{L}igg) \ y(heta,C) &= rac{R}{\sqrt{\pi}}\sqrt{ heta-rac{\sin(2 heta)}{2}+C\sin^3(heta)} \end{aligned}$$

KNIGHTS EXPERIMENTAL ROCKETRY

Body Tubes / Design

• Layup: 6 Plies, Pre-Preg, 3k 2x2 Twill

ltem	Description	Cost	Quantity	Total
Pre-Preg Carbon	2x2 Twill; sold by	(\$157 for shipping +	20 yards	\$1405
Fiber	yard	\$62.39 per yard)		(Prelim)

Boat Tail

- Boat Tail geometry is an aerodynamic taper to the airframe.
- Lowest drag coefficient out of all three possible geometries.
 - The boat tail decreases our drag coefficient by 0.088.

Boat Tail	0.000 (0%)	0.042 (10%)	0.021 (5%)	0.063 (14%)	< Boa
Transition	0.080 (18%)	0.044 (10%)	0.006 (1%)	0.130 (29%)	< Tail
Transition	0.000 (0%)	0.132 (29%)	0.019 (4%)	0.151 (33%)	< Flat

<-- Boat Tail Drag Coefficient <-- Tail Cone Drag Coefficient <-- Flat End Drag Coefficient

Water ballast

Function/ Performance:

- Add weight for ascent
- Removed at descent or apogee
- Gain 1000 points
- Polyester rope should sustain snatch force

Characteristics – TPM values:

• 500ml of water

ltem	Full Item Description	Cost	Quantity	Total	Link (not hyperlink)
G10 plate	Fiberglass Plate	21	1	21	Eplastics
U-bolt	U-bolt	2.5	1	2.5	Home Depot
Water	H2O	1	500 mL	1	Publix
Aluminum (3" diameter by 6"length)	Aluminum to be cnc'd for the nose cone tip	48.07	1	48.07	Online Metals
Nylon Paracord	Ties tip to fiberglass bulkhead	3.99	1	3.99	Amazon
Total money expenditure: \$ 76.56					

Rail Guides Component Breakdown

Function/ Performance:

- Hold rocket to rail
 - Supports rocket so stability can effectively develop
 - Prevents any misalignment of trajectory during launch
- Permanent feature, now a part of rocket and influences flight character
- Potential addition of upstream geometry to reduce drag
- Characteristics TPM values:
- 200lbs of Friction and shear resisted in flanges

Item	Full Item Description	Cost	Quantity	Total	Link (not
					hyperlink)
Launch Lugs	Custom molded medium	\$150	2	\$300	Custom
	density Polyethylene				Rubber
	launch lugs				Corps
Wedge	Custom molded medium	\$120	1	\$400	Custom
(Optional)	density Polyethylene				Rubber
	triangular wedge				Corps
Bolts	M5 cross countersunk	\$14	1	\$14	McMaster-
	head screws (package)				Carr

Fin Cage Component Breakdown

- The fin cage will allow fins to be inserted and held in place to the airframe.
- It will be inside the tail cone, around the combustion chamber of the rocket.
- G10 CNC plates

Fins

Segment	Unit (inches)
Tip chord	2.5
Height	4.8
Root Chord	7
Thickness	0.3

Function/ Performance:

- Shall resist all loads experienced in flight.
- The fins shall provide passive stability to the vehicle.
- The fins shall withstand a fin flutter load of [lb.].
- Fins should minimize the aerodynamic forces acting on the vehicle.

Characteristics – TPM values:

- Pressure Cd [0.0035] Coefficient of pressure
- Friction Drag [291.886] Newtons
- Max lift coefficient [18.37] Normal force Coefficient

Item	Full Item Description	Cost	Quantity	Total	Link (not hyperlink)
G10 plate	Fiberglass Plate FR4	21	4	84	Eplastics
Prepreg	Prepreg 3K, 2x2 Twill Weave Carbon – 1yd roll	199.95	1?	199.95?	FiberGlast
Aluminum plate	3/16 X 3 0.66lb 6ft 6061-T6511 Aluminum Flat plate	48	1?	48?	MetalsDepot

Fins Layup

- Using 3k 2x2 twill CF (6 plies tip to tip) laid on G10 fiberglass or 6061 aluminum
- Exploring Current Materials
 - Aluminum
 - G10
 - Aramid?
- Need to consider flutter & vibrations

Airframe Manufacturing

• Tubes

- Made of 3k 2x2 twill weave prepreg carbon fiber
- Roll the prepreg around a 6 in. metal mandril to build up layers and form the tube
- Cure tube in autoclave and post-process as necessary

Nose Cone

- 3D-printed and sanded
- Wet-lay fiberglass over the 3D-printed mold
- Post-process nose cone as necessary
- Tip made from aluminum cut out with a CNC
- Water Ballast
 - Bulkheads made from G10 plates laser cut with a CNC machine and a drill press
- Rail Guides
 - Machine rail mount

Airframe Manufacturing contd.

- Boat Tail
 - The part will be designed in CAD and then 3D printed. The 3D print will be used as a mold for carbon fiber wet lay. *potentially carbon fiber prepreg but more research would need to be done
- Fin Cage
 - Will be done like last year's cage. The material will be G10 fiberglass and the parts will be made on a CNC machine and then assembled.
- Fins*
 - Made from G10 plates
 - Plates covered with prepreg
 - Sanded down to optimal airfoil cross section design
 - Sand edges to be rounded
 - *other option: use aluminum instead of G10

KNIGHTS EXPERIMENTAL ROCKETRY

IN

FAR 10k Propulsion PDR

Propulsion System

* Last Year's Engine

www.kxrucf.com | 12760 PEGASUS DR, BLDG 40 ROOM 307, ORLANDO, FL 32816

Propulsion Architecture

- Fuel: Ethanol
- Oxidizer: Liquid Nitrous Oxide
- Total Propulsion System Height ~ 8.5 feet
- Total Propulsion System Weight ~ 45 lbs dry & 68 lbs wet
- Target Apogee: 10,000 ft
- Target Thrust: 2,362 N ≈ 531 lbf

Propulsion System Requirements

Functional Requirement	Verification Method	
The Propulsion System shall create thrust.	Demonstration	
The Propulsion System shall contain an oxidizer, fuel, and pressurant.	Demonstration	
The Propulsion System shall indicate tank capacities.	Demonstration	DCKETR'
The Propulsion System shall be reusable.	Demonstration	
The Propulsion System should cost less than \$6,000.	Inspection	
Performance Requirement		
The Propulsion System shall have a wet mass of less than 50 lbs.	Inspection	at UC
The Propulsion System shall have a total length of less than 9 feet.	Inspection	
The Propulsion System shall have an Oxidizer to Fuel Ratio of 3:1.	Test	
The Propulsion System shall have a Burn Time of 7 seconds.	Test	
The Propulsion System shall have a total Impulse of 3710 lbfs.	Analysis	
The Propulsion System shall have a total Mass Flow Rate of 2.5 lb/s.	Test	

Propulsion Org Chart

Propulsion CONOPS

Propulsion Interface Diagram

Propulsion System Verification Plans

- Finite Element Analysis of Components
 - Flange Stress, thrust plate
- Computational Fluid Dynamics Simulations of Components
 - Injector
- Inspection of Machined/COTS Components
- Dry Fit Demonstration
- Injector Water Flow Test
- Hydrostatic Test
- Cold Flow Test
- Static Fire Tests
- Launch

Propulsion Cost

- Fluids Subsystem Cost ~ \$2600
- Combustion Cost ~ \$130
- Injector Cost ~ \$950
- Total ~ \$3680

Sub-System Breakdown

Propulsion System Risk

- Propellant Leaks
- Propellant valve timing error
- Nitrogen Valve freeze
- Low initial thrust
- Pressure Regulator Failure
- Ignitor Blowout/ Failure

Fluids Subsystem

- Regulated Pressure Fed
 - Constant pressure feeding the propellants
 - Minimal performance loss over time
 - Less propellant mass
 - Nitrogen supply a part of the propulsion system
- Considered Blowdown Fed
 - Propellants lose pressure over time
 - Performance loss over time
 - More propellant mass, larger tanks

Fluids Requirements and TPMs

Functional Requirement	Verification Method	
The Fluids Subsystem shall restrict/enable fluid flow throughout the propulsion system.	Demonstration	
The Fluids Subsystem shall report Fuel tank pressure.	Demonstration	
The Fluids Subsystem shall report Fuel tank fill volume.	Demonstration	
The Fluids Subsystem shall report Oxidixer tank pressure.	Demonstration	
The Fluids Subsystem shall report Oxidizer tank fill volume.	Demonstration	
The Fluids Subsystem shall report Nitrogen tank pressure.	Demonstration	
The Fluids Subsystem shall report Nitrogen tank fill volume.	Demonstration	

Operating Pressure	800	psi	Test
Total Delivered Propellant Mass Flow	2.5	lb/s	Test
Delivered Fuel Mass Flow	0.625	lb/s	Test
Delivered Oxidizer Mass Flow	1.875	lb/s	Test
Ethanol Weight	4.375	lb	Test
Nitrous Oxide Weight	13.125	lb	Test
Nitrogen Weight	1.4	lb	Test

at UCF

Fluids Interface Diagram

Fluids Component Breakdown

UCF

Propellant Tanks

Estimated components

- 4 struts per bulkhead
- 2 bulkheads per tank
- 2 tanks total
- Machined in-house (UCF Machine Shop)
- Stock Lead times: TBD
- O-ring Calculations: In-progress
- Estimated stock material costs:
 - Tank Rounds: \$93.41
 - Bulkheads: \$179.48
 - Total: \$272.89

Propellant Tanks

Value

Initial Conditioner

- Utilized equations shown to calculate Force on Bulkhead, Bolt Shear, and No. of bolts required
- Assumed SF = 2
- 20% N2O & 10% Ethanol tank volume dedicated to ullage (Required for pressure-fed system)
- MEOP 800 psi (CC 750psi MEOP + SF)
- Total Weight of Fuel and Oxidizer tanks subassemblies (Dry): ~20 ± 2lbs
- Stock material: 6061 Aluminum Alloy

	10115.			/						
Tille		0.5		Mass F	low (lb/s)	1.875		Mass Flow	(lb/s)	0.625
Total Mass I	Flow (Ib/s)	2.5			Mass (lb)	13.125		Mas	s (lb)	4.375
	O/F	3		Volu	ime (in^3)	482.502		Volume (in^3)	156.457
Dur	Time (a)	7		Volume w	ith Ullage	579.002		Volume with U	Illage	172.103
Bur	n Time (s)	1		Height of	f Tank (in)	32.674		Height of Tan	k (in)	9.712
Force of B	ulkhea	d		Minim	um Nu	mber of	Bolt	S Bolt Shear		
$F_{bulk} = \left(\frac{\pi}{4}\right)$	$(D_i)^2$	× MEC)	n _{bolts}	$= \frac{F_{bull}}{F_{bolt}^{max}}$	<u>k</u>		$\sigma_{boltshear} =$	$\frac{\left(\frac{\pi}{4}(D_i)\right)}{\left(\frac{\pi}{4}(d)\right)}$	$()^2 \times MEOP$ $(bolt)^2 \times n$
								at	UCF	
MEOP (psi) 🔽 🛛 Tank	k ID (in) 🔽	Tank wall thickne	ess (in) 💌	Target SF 💌	Estimated Ho	oop Stress (psi)	Max	Shear Stress of Aluminu	m (psi) 💌	SF calculated
800 4	4.75	0.125		2	15	5200		30000		1.973684211
Ultimate Stress of Bo	olt (psi) 🝸	Max Bolt Force	e (LB) 🔻	Min # of bolt	ts 🝸 🛛 Recco	mmended # of b	olts 🔻	Bolt Shear (psi) 🔻	Safety Fa	actor Bolt Shear
72000		3534.29173	35	4.011111111	1	10		28880		2

Value 🖵

Fuel

Oxidizer

Value 🗸

Sizing Nitrogen Tank

 Related the volumetric flow rates of the pressurant entering and the propellant leaving to derive this equation

•
$$\dot{m}_g = \frac{\dot{m}_L P_{g,i}}{\rho_{L,i} R_g T_{g,i}}$$

- $m_g = \dot{m}_g * Burn Time$ • $V_g = \frac{m_g R_g T_g}{P}$
- Nitrogen tank operating = 3500 psi
- Nitrogen tank volume > 0.622 Gallons
- Still investigating how isentropic expansion and Joule-Thomson affects our nitrogen supply

Propellant	Tank Operating Pressure (psi)	Density of Propellant (lb/ft^3)	Specif Consta	ic Gas nt (N2)	Nitrogen Temperature ((K)
Ethanol	800	773.990	29	6.8	310	
Nitrous Oxide	800	752.926	29	6.8	310	
Propellant	Nitrogen Mass Flow Rate (lb/s)	Nitrogen W Required	eight (lb)	Nitrogen	Volume Requi (Gallons)	red
Ethanol	0.048	0.339			0.152	
Nitrous Oxide	0.149	1.045			0.470	
Total	0.198	1.384			0.622	

 $P_{g,i}$

 ρ_L

Nitrogen Tank

- Aluminum tank overlayed with carbon fiber
- Commercial off the Shelf (COTS)
- Cost of \$191.53
- Total Volume of 3.0 L ~ 0.8 Gallons
- Weight of 2.1kg ~ 4.6 lb
- 4500 psi Maximum Operating Pressure
- Straight Port with M18*1.5
- Clamping bulkhead system for propulsion system interface
- Nitrogen is easier to obtain than helium

Pressure Regulator

Outlet Pressure: 800 psi

Outlet NPT fitting of 1/2 "

- Spring-loaded high-flow pressure regulator
- Debris or freeze up could cause leakage
- Must be mounted vertically due to length being longer than internal chassis diameter
- Cost: \$655
- Rated to 60 F
- Cv 0.8
- Weight 2.75 lb Length: 6.5 in Diameter: 3 in
- Inlet Pressure: 3500 psi
- Inlet NPT fitting of ¼ "

Functional and Performance Requirements	Verification Methods
Regulator shall create an inlet pressure of 3,500 psi	Analysis
Regulator shall create an outlet pressure of 800 psi	Analysis
Regulator shall be able to withstand a temperature of -60F	Demonstration
Coefficient of flow shall be 0.8	Analysis
Seal material shall be able to withstand -60 degrees Fahrenheit	Analysis
Regulator shall handle a mass flow rate of .22 lb/s of nitrogen	Analysis

Aqua Environment 873

Nitrogen Tank Valve/Check Valves

- Nitrogen Tank Valve
 - Servo-actuated ball valve after pressure regulator
 - Chose servo-actuated due to lower risk and cost factors
 - Cost: ~\$120-\$150
 - Fitting size: 1/4"

- Nitrogen Check Valves
 - 3x check valves: one for each propellant feed line to prevent upstream propellant mixing and one for filling
 - Still in talks with various suppliers for check valves
 - NPT fitting of 1/4"

Fuel and Oxidizer Main/Check Valve

- Progress Given specified orifice diameters from the fitting's component group selected configurable ball valves and Check valves that minimized pressure drop. Decided on Servo actuated ball valves as last year system found it reliable
- **To Do** Make Servo ball valve interface assemblies and size the servos to actuate the valves
- **Cost** 32\$ for servos and 330\$ valves

line	Valve type	Valve Description	с٧	Delta P (Pa)	Delta P (Psi)	link			
Ethanol	Check valve	Inline Yor lok fitting 1/4" Tubing	0.75	1.81876E-07	2.63789E-11	Mcmaster		0	2
NOX	Check valve	Inline Yor lok fitting 1/2" Tubing	3.3	8.84906E-08	1.28345E-11	Mcmaster	ΔI	$P = G \cdot \frac{Q}{Q}$	-
Ethanol	Ball valve	lockable lever 1/4" tubing	1.3	6.05356E-08	8.77996E-12	Mcmaster		C_1	,2
NOX	Ball valve	lockable lever 1/2" tubing	9.3	1.11419E-08	1.616E-12	Mcmaster			
Ethanol	Check valve	Poppet 1/4" tubing	0.47	4.63129E-07	6.71713E-11	Swage			
NOX	Check valve	Poppet 1/2" tubing	1.68	3.41434E-07	4.95209E-11	Swage	Fuel		
Ethanol	Ball valve	3 piece lever 1/4" Tubing	1.2	7.10452E-08	1.03043E-11	Swage	Mdot(kg/s)	rho(kg/m^3)	SG
NOX	Ball valve	3 piece lever 3/8" Tubing	7.5	1.71318E-08	2.48476E-12	Swage	0.283	785.2	0.787563
							Oxidizer		
							Mdot(kg/s)	rho(kg/m^3)	SG
							0.85	5 752	0.754263

Mcmaster Compression fitting Stainless Steel ball valve MOP 2000 PSI

Mcmaster Compression fitting Brass check valve MOP 3000 & 2200 psi (1/4 & 1/2")

Servos

Relief Valves

For Each Propellant Tank:

- 1 x Active Relief Valve (Primary)
 - \$88.00
 - 0.125 in orifice, 1/8"
 - Allows controlled venting
 - Allows venting to atmospheric
- 1 x Passive Relief Valve (Redundant)
 - \$79.58
 - 0.11 in orifice, 1/4"
 - Allows tanks to vent without additional control
- Relief calculations still in progress

Aqua 1607 Relief Valve Passive

Swagelok B-41S2 Ball Valve Active

Feedlines & Fittings

Fittings

Mostly compression fittings for ease of assembly

 $\dot{m} = \rho v A$

- NPT used on some components
- Cost ~ \$400

Feedlines

- $\frac{1}{4}$ " for pressure and relief system
- $\frac{1}{2}$ " for oxidizer feedline
- $\frac{1}{4}$ " for fuel feedline

mass flow (lb/s)	 ✓ gamma 		Pressure (psi)	\sim	R	\sim	kelvin	\sim	Diameter	(in)	\sim
0.13	39	1.4		800	191	.609	3	10		0	.0054	01
0.13	39	1.4		4000	191	.609	3	10			0.	.05
mass flow (lb/s) \sim	gamma 🖂	temp	ature (kelvin) 🛛 🖂	pressur	e (psi)	~	R J/(kg(k)) 🗠	diameter	~	Colum	r ~
1.8748	1.31		310			800	18	38.9	1 0.37	50		0

$$\dot{\mathbf{m}} = \frac{Ap_{t}}{\sqrt{T_{t}}} \sqrt{\frac{\gamma}{R}} M (1 + \frac{\gamma - 1}{2} M^{2})^{-\frac{\gamma + 1}{2(\gamma - 1)}}$$

Internal Structures

- Expected max. compressive force of about 1650lbs and max. snatch force of 679lbs (SFs of 1.5):
 - Mitigate Forces on Pressure Vessels
 - Bulkheads are joined by vertical inter-tank struts.
 - Inter-tank struts contain a slot for a sliding interface with chassis struts.
 - As a result of this design: expect most forces to act upon the thrust plate assembly.

• With considerations toward static-fire testing and maintenance:

- Couplers for airframe are to be jointed halves.
- Sliding interfaces within struts can be used in test stand.
- Knitro's unique fastening interface:
 - Disc-tank faces filleted, identical I-brackets as bulkhead
 - Expected Cost of 4 L-brackets and 0.3in thick 6061-T6 discs (machined in-house): \$16.49+142.92; \$159.41

• Estimated Cost of Propulsion's Internal Structures: \$305.28

(Sum of Propellant tank structural components and Knitro's structural component costs.) (12 Struts, 12 L Brackets, 2 discs)

Fluid Systems Manufacturing

- Bulkheads
 - Machined entirely out of billet aluminum 6061-T6
 - Helicoils for threads
- Tank Walls
 - Prebought aluminum 6061-T6 tube stock
 - May need to turn ends depending on tube stocks "roundness"
 - Drill holes for bulkheads to bolt to
- Feed Lines
 - Lines will be bent by our team
 - Swagelok fittings and flares will be done by our team

Combustion Subsystem

- Single piece combustion chamber and nozzle
- Ablative liner
- Chamber Pressure: 500 psi
- O/F Ratio: 3
- Total Mass Flow Rate: 2.5 lbm/s
- Expansion Ratio: 5.28
 - Assumed ambient condition of 13 psi

Combustion Component Breakdown

Combustion System Requirements

Functional Requirement				Verification Method	
The Combustion Subsystem shall igr	nite the p	propellan	ts.	Demonstration	
The Combustion chamber shall with	stand ig	nition ter	nperatures.	Demonstration	
The Combustion chamber shall with	stand bu	ırn temp	eratures.	Demonstration	OCKETRY
The Combustion chamber shall with	stand bu	Irn press	ure.	Analysis	
The Combustion chamber shall seal	all press	ure.		Demonstration	
Technical Performance Measure	Value	Units	Verification	Method	
Maximum Chamber Pressure	500	psi	Analysis & T	est	
Maximum Chamber Temperature	2600	К	Analysis		
Burn Time	7	sec	Test		

Combustion Interface Diagram

Combustion Chamber and Nozzle

- Initial values found with CEA
- Design verified with RPA
- Estimated Specific Impulse
 - 212 seconds
- Estimated Thrust
 - 531 lbf peak
- 1/8" chamber wall thickness
- 9.5" overall length

Thrust and	d mass fl	ow rate	5			
Chambe:	r thrust	(opt):	531.46	5974	lbf	
Specific	impulse	(vac):	233.23	215	s	
Chambe:	r thrust	(vac):	583.08	037	lbf	
Specific	impulse	(opt):	212.58	789	s	
Total 1	mass flow	rate:	2.50	000 11	om/s	
Oxidizer 1	mass flow	rate:	1.87	500 11	om/s	
Fuel :	mass flow	rate:	0.62	500 1	om/s	
Geometry (of thrust	chambe:	r with	parabo.	lic nozz	le
Dc =	3.00	in	b =	40.00	deg	
R2 =	1.81	in	R1 =	0.72	in	
L* =	58.00	in				
In -	6 96	in L		4 02	i n	

0.97 in Tn = 0.18 in 19.38 deg 2.00 in Te = 15.28 deg 2.22 in 5.28 e/At le/Dt = 2 07 84.71 % (relative to length of cone nozzle with Te=15 deg) Mass = -13.44 lbm Divergence efficiency: 0.98852 Drag efficiency: 0.96478 Thrust coefficient: 1.59416 (vac)

Rocket Ignition

- Ignitor (2 Part System)
 - Rocket Candy
 - 65% Potassium Nitrate (oxidizer)
 - 35% Sugar (fuel)
 - 9v Initiator (e-match)
 - 3 for Redundancy
- Why this combination?
 - Lowest Production Cost (est. \$3.45 per batch)
 - Relatively Safe and Reliable
- Risk of blowout before ignition

Ablative Liner

- Peak chamber temperatures of 2600K
- Minimal thickness to prevent chamber wall erosion over engine lifetime (1/8")
- Starlite
 - Great insulation and heat dispersion
 - Ease of manufacturing (cornstarch, flour, sugar, baking soda, borax)
- Phenolic Garolite (RCS liner) shall be used if Starlite deemed impractical
- Tapered up until the engine throat

Hot Side: 823 K = 1022 F Cold Side: 329 K = 133 F

Combustion Manufacturing

- Combustion Chamber
 - DMLS Inconel 718
 - Printed axially for ease of post machining
 - Post machining needed for internal geometries
- Ablative Liner
 - SRAD mold for Starlite
 - 3D Printed ABS filament
 - Needs to be dried for rigidity

Preliminary combustion chamber cad in Cura slicer to show print orientation

Injector Subsystem

- Pintle Injector
 - Chosen over impinging due to performance predictability and ease of manufacturing
 - Discrete radial elements, continuous axial element as experimental rocketry
- Stacked plate design to interface with combustion chamber flange
- Estimated 750 psi inlet pressure from propellant tanks

Injector Requirements and TPMs

Requirement				Verification Method
The Injector shall be able to withstand ignition temperatures.				Test
The Injector shall be able to withstand burn temperatures.				Test
The Injector should be able to produce a combustion efficiency (C*) of at least 90 to 95%.				Analysis
The Injector should maintain an equivalence ratio of 3:1.				Analysis
The Injector shall be able to withstand pressurization stress.			Test	
Technical Performance Measure	Value	Units	Verifi	cation Method
Maximum Ignition Temperature	2600	К	Analy	vsis
Ethanol Mass Flow Rate	0.625	lb/s	Test	
Nitrous Oxide Mass Flow Rate	1.875	lb/s	Test	
Minimum Pressure Drop from Inlet and Combustion Chamber	20	%	Test	
Maximum Stress from Pressurization	7500	psi	Analy	vsis

Injector Component Breakdown

Injector – Fluid Design

- Radial (discrete) fuel orifices
 - 8 x 0.047" diameter
- Axial (continuous) oxidizer orifice
 - 1 x 0.546" diameter
 - 0.5" pintle OD
- Cd values and nitrous density are unpredictable
- Pintle geometry may change to achieve a higher blockage factor
- Minimum expected combustion efficiency of 90% C*

Radial Sizing (solve for diameter)	~	Value	~
mdot (lbm/s)		0.625	
rho (lb/ft^3)		48.4	
inlet pressure (psi)		750	
Δp (psi)		250	
Δp (lb/ft^2)		36000	
Cd		0.65	
number of orifices		8	
total orifice area (in^2)		0.013071105	
orifice diameter (in)		0.045610645	
orifice diameter (1/64 of an in)		2.919081253	
V (ft/s)		142.2606733	

Axial Sizing (solve for diameter)	Value 🔽
mdot (lbm/s)	1.875
rho (lb/ft^3)	44
pintle diameter (in)	0.5
inlet pressure (psi)	750
Δp (psi)	250
Cd (estimated)	0.7
total orifice area (in^2)	0.038189608
orifice diameter (in)	0.546465479
V (ft/s)	160.6815032
total momentum ratio	0.295119373
blockage factor	0.232293105
spray Angle (deg, from vertical)	39.45448811

Housing, Orifice Plate, and Face Plate

- Injector Housing
 - Design Considerations: Annulus Volume, Wall Thickness, Pressure Transducer, Flange Bolt Integration, Inlet Valve
 - Points of Failure: Wall Thickness, Seals
- Orifice Plate
 - Design Considerations: Plate Thickness, Orifice Diameter
 - Depressurizes to better control spray angle, distributes Oxidizer evenly
- Face Plate
 - Design Considerations: Plate thickness, Orifice Diameter
 - Points of Failure: Seals, Section facing combustion chamber.
 - Directs flow towards the central orifice where it enters the combustion chamber

Technical Specifications	Measure	Verification	Requir
Injector Outer Diameter	4.25 inches	Inspection	Injector
Oxidizer Orifice Diameter	0.532"	Inspection	and eve
Face Plate Thickness (Thinnest)	0.25''	Inspection	Injector
Orifice Plate Thickness (Thinnest)	0.25"	Inspection	Orifice distribu

Pintle

• Pintle

- Fuel cavity depth maximized to achieve pintle tip cooling
- Design Considerations
 - Thermal Load and Threading

Requirement	Verification
The Pintle Tip shall be able to withstand temperatures of 2600 K for 7 seconds	Test
The Pintle Body shall achieve a 0.625lbs mass flow for the fuel.	Analysis

Technical Specifications	Measure	Verification
Pintle Outer Diameter	0.5 Inches	Inspection
Pintle Inner Diameter	0.25 Inches	Inspection
Orifice Diameter	3/64 Inch	Inspection
Number of Orifices	8	Inspection

Injector Manufacturing

- Injector body
 - Aluminum 6061-T6
- Pintle
 - Copper
- Orifice Plate
 - 0.25" aluminum 6061-T6 sheet metal
 - Laser cut and post machined if needed
- Face plate
 - Copper or Aluminum

Integration Plan

Combustion Integration: nitrile crush glands will fit into combustion chamber chamfers, pressure sealing the chamber and injector.

Aerostructures Integration: bolts will attach the injector housing to the thrust plate.

Propulsion System Questions?

