

November 29th, 2023 FAR10k Basilisk Vehicle Critical Design Review

Critical Design Purpose

Demonstrate that the design is appropriate to proceed with the fabrication phase

KNIGHTS EXPERIMENTAL ROCKETRY

Determine that technical progress is on track to complete mission requirements within cost and schedule restraints

Approve "build-to" baseline design plans

Concept Definition: The Mission

- FAR51025 Contest
 - Point Based Competition
 - Mojave, California
 - May 31st
- DPF 2023
 - Dynamic Piston Liquid Bi-Propellant to ~5,000ft
- FAR 2022
 - 1st, 2nd, 3rd place
 - ~5,000ft solid motors with deployable payloads

Stakeholder Definition

The members of our team

- Cultivate a passion for science, technology, and space exploration
- Develop skills that prepare students for the professional industry

10

Friends of Amateur Rocketry Officials

- Point scoring system and rules

KXR Executive Board

- Funding
- Outreach
- Misc. Support

Organization Chart

Team Demographics

- Team: 96 students
- Managers: 4
- Leads: 20
- Component REs: ~50

Basilisk: Vehicle Overview

- Launch to 10k feet
- Recover in refight condition
- Deploy rover and drone
- Interface with LTI

Performance Measures				
Altitude	10,900 ft			
Impulse	20,893, Ns 4,697 lbfs			
Velocity	Mach 0.72			
Max Acceleration	4 g			
Stability	3.82 cal			
Mass	168 lbs			
Thrust to Weight	3.15			
Length	18 ft			
Diameter	6.2 in			

Score Guide

FAR 51025 Scoring This will aid teams in how the scoring works for the competition.

Altitude: a point is awarded for every foot of altitude reached up to the target of the division entered. A point is deducted for every foot of altitude over the division target. Example, a rocket entered in the 10,000' division that reaches 9,500' would receive 9500 points to their score. New Unlimited, team picks target altitude (different scoring metrix)

Motor type: Acknowledging the increased difficulty of experimental motor design, construction, and testing, additional points are added for their use in the rocket Changes for 2023: experimental solid motors an additional (10% of altitude reached) points added to the score, experimental hybrids an additional (20% of altitude reached) points and experimental liquids (30% of altitude reached) points. Commercial hybrids or liquids will receive 500 points.

2-stage rocket: An additional 1,000 points are given for teams competing in the 25,000' division that does so with a 2-stage rocket.

Water ballast nose cone: Many people use heavy materials for ballast to stabilize rocket flight. An additional 1,000 points are given to any team demonstrating the successful use of a nose cone containing 500 mL of water for ballast and safely releasing the water into the air at or near apogee.

Build video or photos: 500 points will be added to the team score for a 2 minute video of the team's build or 25 photographs and submitted Change for 2023: one week prior to arrival at the FAR facility.

Payload options, changes for 2023, points award for successful mission completion

1000-points: Remotely Radio-Controlled Rover. Changes for 2023: Rocket must deploy a rover that leaves the rocket and travels a minimum of 10-feet after touchdown with live video on the ground from the rover to the receiving station till. Rover can be deployed separately from the rocket in the air on a parachute or after landing.

3000-points: Autonomous rover: A rover that returns autonomously to FAR designated area with live video. New for 2023: 2,000 points if memory card used instead of live video. 1000-points: Remote Sensing. Changes for 2023: After landing, a remote video camera will record

the landing surroundings in a 360-degree horizontal panorama for transmission to launch control. **1000-points: Reconnaissance.** Glider deployment below 400' on rocket descent with live video transmission. New for 2023: 1,000 points for memory card video instead of live video if glider returns to FAR designated landing area for memory card retrieval.

2000-points: Reconnaissance Return. Release of drone below 400' altitude or after landing with live video during drone return to a FAR designated location by autonomous or remote control. New for 2023: 1,000 points if video memory card used instead of live video.

500-points: Remote Sensing. Rocket must transmit live video from liftoff to touch down. Live video must be seen by judges and or recorded by the ground launch area receiving station for later viewing.

500 additional points New changes for 2023: for a user defined scientific payload that is contained in a 0.5 to 3 U CubeSat, Pocket Cube (5cm*3) or CanSat form factor. Prior approval required.

New for 2023: points for on board video source recorded to a memory card during the flight must be received by judges or downloaded the day of the flight to <u>rocketrycontest@gmail.com</u>

Live video must be witnessed by a judge and recorded at the ground launch area receiving station. Ground station recording of live video can be done on memory card or cell phone video of screen. *Points are awarded for successful payload mission completion.*

Challenge Selected	Points Possible
10,000 ft Altitude	10,000
SRAD Liquid Propulsion	3,000
Water Ballast	1,000
Build Video	500
Remotely Controlled Rover	1,000
Reconnaissance Return Drone	2,000
Remote Sensing Camera	500
Total Points	18,000
Max Possible Points	23,500

Vehicle CONOPS

Vehicle Level Architecture

Vehicle Interface Diagram

Launch and Test Infrastructure Cont.

Avionics Control Board (ACB)	Propulsion Control Board (PCB^2)	Ground Station
Provides Power to Cameras	Provides Power to Propulsion	Fills Nitrogen and Nitrous Oxide
Transmits Data to Ground Station	Sends launch commands	Receives data from Avionics (ACB)
Collects Telemetry Data	Wired connection to Ground statation	Receives Live Video from Drone/Rover
Stores Data locally	Stores data locally	Sends wired commands to PCB^2 and ACB

Total Vehicle Budget: \$13,000

Estimated System Breakdown

- Propulsion: **\$4,500** / **\$6,000**
- Aerostructures: **\$5,000** / **\$4,500**
- Payloads: **\$2,500** / **\$2,500**

Sources of Funding

- UCF SG: \$5,000
- KXR UCF: **\$5**,000
- FSGC: \$3,000
- Lockheed Martin *
- Daytona Speedway *
- Northrop Grumman *
- Agile Space *

Schedule: 9 Months

PI-1: Concept Dev and Design September – December	Explore Concepts, Develop Team Structure, Create the final design	
3 MONTINS	Concept Exploration, Design Phase, PDR, SRR, and CDR, approve budget	
PI-2: Procurement and Manufacturing	Procure throughout winter break	
December – March 3 months	Manufacturing, Simulation Verification, Machining, Assembly, and travel	
PI-3: Testing and Launch March – June	Begin Testing campaign, integration of systems, small changes and integration	
3.5 months	Travel to Mojave and Launch	

Schedule: PI 1

PI-1: Concept Development and Design (August – December)

•	Preplanning	(Aug. 1st –31st)
•	Vehicle Concepts Design	(Aug. 15th - 31st)
•	Concept Development and Learning Phase	(Sprint 1,2)
•	System Requirements Review	
•	Preliminary Design	(Oct: Sprint 3,4,5,6)
•	Preliminary Design Review	(Oct. 23th)
•	Detailed Design	(Oct <mark>-Nov:</mark> Sprint 4,5,6)
•	Sub-System/Component Requirements Review	(Mid-Nov.)
•	Critical Design Review	(End of Nov.)
•	Begin Procurement	(Dec: Sprint 7)
•	End of PI-1	(December)
		More details in SEMP

Verification Plans

1. System Verification Testing

2. Vehicle Dry Fit Test

- Geometrical fits and tolerances 1.
- 2. System Interfaces
- 3. System functions
- 4. Vehicle Level Testing

3. Wet Dress Rehearsal

- 1. Launch Facility integration
- LTI Interfacing
 Element Level Testing
- 4. Launch Day Verification testing
 - 1. Repeat of 3 and 4
- 5. Flight Demonstration

Systems Engineering Processes

- Concept Dev. and Trade Studies (25) Complete
- Design Descriptions (350+ pages) Complete
- Requirements and Verification VCRM Baseline
- Interface Control Documents
- Concept of Operations CONOPS
- Architecture

Baseline
Baseline
Baseline

Next Steps

- Approve long lead time and high priority items for purchase
- Begin Procurement
- Complete a "Delta CDR" in PI2 for unfinished designs

Questions?

Payload CDR FAR10k Basilisk

Basilisk - 2024 FAR51025

Payload Mission Objectives

- Remote-Controlled Rover (2000pts)

 Must travel 10ft while transmitting live video during those 10ft
- Remote-Controlled Drone (2000pts)

 Must release drone below 400' or after touchdown
 Drone must travel back to a designated drop-off zone
- Remote Sensing Live Video (500pts)

 Must transmit live video from liftoff to touchdown

Remote Sensing – Local Save (500pts)
 Must save live video from flight to an SD card

Payloads System

Basilisk - 2024 FAR51025

Payloads System Architecture

Payload Cost

Payload	Cost
Deployment	\$[567.65]
Rover	\$[306.56]
Drone	\$[438.48]
Remote Sensing	\$[232.16]
GSE	\$[845.90]
Buffer	\$[109.25]
Total	\$[2500]

Payload Canister

Payload Canister (Hardware)

- Used to guide Payload Canister out of upper body tube
- 3 will be housed inside upper body tube
- Length: 22in
- Curved to fit ID of body tube and OD of payload canister

Angle Brackets

6061 Aluminum
 Used to hold bulkhead to canister tube
 Held with ¼-20 bolts

- U-bolt
 - Black Oxide
 ¼-20 thread
 Capacity: 425lbs
 Unaffected by snatch force

Angle Bracket Bolts

McMaster Carr ¼-20
0.75 Thread Length

3D Print Bolts

¼-20
5/8 Thread Length

Bulkheads

Outer Bulkhead

 Made from CNCed G10
 Fiberglass
 Diameter = 5.5"
 ½-20 for all holes

Bulkheads

Inner Bulkhead

 Made from CNCed G10
 Fiberglass
 Diameter = 5.375"
 ¼-20 for all holes

Canister Tube

- Canister Tube
 - Made from woven G12 fiberglass
 OD = 5.525"
 ID = 5.375"
 Rover Tube
 Length = 10.5in
 Drone Tube
 Length = 10in

3D Print Outs

1/4-20 Threaded Inserts

*Dimensions are the Same Length as the inner space of the Canister Tube

Dimensions of Rover/Drone

Basilisk - 2024 FAR51025

Payload Canister (Quick Release Mechanism)

Payload Canister

Electrical Components

- Portable Battery
 - 5V supplied
 5000mAh
 Built in voltage regulator

Electrical Components

 ESP32 w/ Breakout Board

 Used as a microcontroller to handle actuation of servo
 Common and Well Known

Electrical Components

- BMP390 Pressure Sensor • Used to measure altitude based on pressure
- Servo

 Used to pull release mechanism pin

Quick Release

Kong Quick Release 520

 Made from Stainless Steel
 Dimensions (1.3"x0.8"x0.05")
 Maximum load: 881 lb
 Weight: 10.4 g

Quick Release System

- Responsible for holding and releasing the rover and the drone.
 - 20KG RC Servo
 - Kong Quick Release 520
 - 12in of Rope
 - Mini U-Bolt
 - 8# x1" Screws
 - Hex Nuts
 - Horn Steering Arm
 - Servo Bracket

The quick release system will be comprised of a quick release latch made open by the servo's action to pull the rope that is connected to the keyring that is holding the quick release latch in place.

Functional and Performance Requirements	Verification Methods
ne Quick Release shall Function	Demonstration
ne Quick Release shall Attach/Detach to and from the Rover and e Drone	Demonstration

Payload Interface Diagram

UCF

Payload CONOPS

Payload Canister Test Campaign

Finite Element Analysis (Analysis)
Continuity Test (Testing)
Pressure Sensor Test (Testing)
Quick Release Test (Testing)
Payload Canister Drop Test (Testing)
Payload Canister Deployment Flight Test (Demonstration)
Payload Demonstration (Demonstration)

Rover Test Campaign

Finite Element Analysis (Analysis)
Continuity Test (Testing)
Transmission Test (Testing)
Piloting Test (Testing)
Rover Drop Test (Testing)
Payload Demonstration (Demonstration)

ATS EXPERIMENTAL ROCKETRY at UCF

Drone Test Campaign

Continuity Test (Testing)
Transmission Test (Testing)
Auto Stabilization Test (Testing)
Piloting Test (Testing)
Payload Demonstration (Demonstration)

at UCF

<u>Remote Sensing Test Campaign</u>

Continuity Test (Testing)
Transmission Test (Testing)
Local Save (Testing)
Payload Demonstration (Demonstration)

Payload Deployment System FMECA

Part	Failure	Criticality	Effect	Mitigation
Payload Canister	Quick Release	High	Mission Failure	Testing, Demonstration
Payload Canister	Barometric Sensor Delay	Low	Released at different height than specified	Testing, Demonstration
Payload Canister	Servo Failure	High	Quick Release Failure; Mission Failure	Testing, Demonstration
Payload Canister	Mechanical Failure	Medium	Canister Breaks on Impact Possibly Affecting Mission	Analysis, Testing, Demonstration
Drone	Auto-Stabilization	High	Mission Failure	Testing, Demonstration
Rover	Mechanical Failure	High	Rover Breaks on Impact	Testing, Demonstration

30

Rover Subsystem

TPMs

Measures	TPM Value	Units	Verification Method
Dimensions	7" x 5.31" x 3.3"	in	Inspection
Weight	1.54	lbs	Inspection
Operating Time	1.03-1.6	hr	Analysis, Testing, Demonstration
Passive Power Draw	1405-2165	mA	Analysis, Testing, Demonstration

Rover Component Breakdown (Architecture)

Basilisk - 2024 FAR51025

Rover Interface Diagram

Rover CONOPS

Chassis

- COTS Chassis constructed of (6061-Aluminum Sheets)
- Aluminum sheets bolted
 - 4"x3.64"x2"
 - Electrical components
 screwed into place inside
 - o 4-40 Stainless Steels
 Bolts

Chassis Bolts

Bolts

 4-40
 Stainless steel
 Common to work with

Rover Mechanical Electrical Layout

- Layout of electrical components within the chassis of the rover
 - \circ Screwed into place
 - Based on effectivity to reduce failure points

Top View

Rover Mechanical FMECA

Part	Failure	Criticality	Effect	Mitigation
Tread Chains	May snap if a high impact is sustained	High	Loss of rover mobility	Testing, Demonstration
Tread Chains	May slip off if an object is forced in between the gears and tread chain	High	Loss of rover mobility	Testing, Demonstration
Rover Gear	Mechanical Failure on Impact	High	Loss of rover mobility	Testing, Demonstration
Drive axles	Mechanical Failure on Impact	High	High degree of impairment / Loss of rover mobility	Testing, Demonstration
Chassis	Mechanical Failure of Bolts on Impact	Medium	Reduced Protection / Efficiency of Chassis	Mechanical and Finite Element Analysis, Testing, Demonstration

Traversal Mechanism

The Traversal System (or "Treads") provides propulsion to the rover, and consists of:

- VEX Tank Tracks
- 2 DC Motors

Sizing Specifications:

- Gear ID: 1.79 in
- Tread Link Length: 0.244 in
- Total Tread Dimensions: 2.16 x 1 x 7.85 in

Rover Electrical Systems Breakdown

• Driving System:

Map control signals with 14V power. (port open and close)

• Processor System:

 Convert signal from radio to drive commands for motor functionality.

• Control System:

Capture and transmit control signals from radio to rover.

• Video System:

• Capture and transmit live video to ground station.

• Receiving System:

Receive and display live video captured from rover.

40

Rover Driving System: Overview

• Components:

- \circ Processor subsystem:
 - Receiver: Sologood 915MHz ELRS Nano (stock antenna)
 - Processor: Teyleten ESP32 Microcontroller
- OMotor subsystem:
 - Motors: TAM54393 Type 380 Brushed Motor
 - Motor Driver: Qunqi L298N Motor Driver

Rover Driving System: Battery

- CNHL 2200mAh 4s 14.8V LiPo
 - 42 minutes mission lifetime with full activation of both motors. This does not account for work based on terrain.
 - All power and ground supplied via PDB
 - Charge Rate: 40C
 - Equipped with a XT60 power connector.

Processor Subsystem

• Processor:

- Responsible for converting receiver signals to the L298N motor driver. (Will not interface with video system)
- ESP32 will only handle 2 receiver channels respective to CH1 and CH2 from the radio

• Logic:

- Signal from CH1 will turn rover clockwise
- Signal from CH2 will turn rover counterclockwise
- Signal from CH1 + CH2 will drive rover forward

Rover Driving System Code Logic

- 2 defined functions: • Left Motor power • Right Motor power
- ESP Will read Channel PWM from receiver
 - Signal from ESP will be sent to L298N Motor Driver activating the motor (all or nothing)
 - GPIO will be respective to each channel for simplicity
 - Only value being passed will be 1 or 0 (open or close).

Receiver sends
PWM output to
ESP32ESP32 Converts
receiver PWM
signals into CH1
and CH2CH1 is
opened

Rover Driving System: Controller

- Controller: Radiomaster TX12 Radio (Mode 1)
- Transmitter: Happymodel Micro TX900 ELRS Transmitter (same configuration for drone)
- Notes:

 Only 2 channels are to be used for the rover. Channel 1 and Channel 2 will control left motor and right motor respectively. There are no other functions carried out by the controller (8 extra available channels)

Rover Driving System: Visual Representation

Basilisk - 2024 FAR51025

Rover Driving System: Visual Representation

TAM5493 Type 380 Motor

Qunqi L298N Motor Driver

Rover Driving System: Visual Representation

• ESP32 Microcontroller

Sologood 915mHz ELRS receiver

Rover Video System: Overview

- Camera: Runcam Nano 2
- VTX: 1.3GHz Dual Channel Video Transmitter
 200mw @ 150mA | 800mw @ 250mA (350mA drain total)
- Camera is to be powered through the VTX through 5V out pad.
- Video System DOES NOT interface with processing system

Rover Video System: Visual Representation

Demonstration of power supplied directly from PDB to VTX then CAM (No interfacing with processing system)

Basilisk - 2024 FAR51025

Visual Representation of Video System

Rover Video System: Receiving

Video Receiver: ReadyMadeRC 900MHz – 1.3GHz VRX

• Antenna: TrueRC Line Air 1.3GHz Directional Antenna

- Screen: Fat Shark Scout Goggles (AV Cable configuration)
- Battery: RDQ 11.1V 3s 2200mAh (~7 hours mission lifetime at 300mA drain)
- Notes:
 - The receiver and battery (powering only the receiver) will be attached via Velcro. From the receiver an AV cable will transfer video from the receiver to the goggles. This is done to avoid issues of regulating a 5.8GHz receiver to 1.3GHz. This is a direct manual conversion without using a repeater (local interference).

Rover Electrical FMECA

Part	Failure	Criticality	Effect	Mitigation
ESP	Electrical disconnect	High	Disconnect of any Electronic Component, Possible Mission Failure	Testing, Demonstration, Wrap wire around screw
ALL PARTS	Assembly Damage	Medium	Malfunctioning / Damaged System	Mechanical Testing, Demonstration
VTX	Overheating	Low	Reduced Efficiency of Transmission	Testing, Demonstration
Receiver	Out of transmission range	High	Mission Failure / Failure to Contact Payload	Analysis through Calculation, Testing, Demonstration
Battery	Overheating / Overcharging	High	Possible Combustion / Explosion / Off Gassing	Testing, Demonstration
PDB	Short Circuit	High	Complete Rover Shutdown	Analysis through Calculation, Testing, Demonstration

Drone Subsystem

TPMs

Measures	TPM Value	Units	Verification Method
Dimensions	8" x 5" x 1.6"	in	Inspection
Weight	1	lbs	Inspection
Operating Time	0.32-0.33	hr	Analysis, Testing, Demonstration
Passive Power Draw	4300-5125	mA	Analysis, Testing, Demonstration

Drone Component Breakdown (Architecture)

Drone Interface Diagram

Drone CONOPS

Mechanical Components

- Propellors
 - HQ Prop ETHIX P3B 5.1x3x2 Bi-Blade 5" Prop 4 Pack - Peanut Butter & Jelly
 COTS for simplicity

Mechanical Components

- Chassis
 - Manufactured out of CNCed 0.12in Carbon Fiber Sheets (3mm)
 - $_{
 m |\circ|}$ Frame is 5" by 5"
 - Holes added for extra airflow to electronics
 - All Screw holes are for M3 screws for electronic components

Drone Mechanical FMECA

KNIGHTS EXPERIMENTAL ROCKETRY

Part	Failure	Criticality	Effect	Mitigation
Propellors	Mechanical Failure	High	Unstable Flight / Mission Failure	Testing, Demonstration
Chassis	Mechanical Failure	High	Chassis Failure / Mission Failure	Testing, Demonstration

Drone Electrical System

- Centralized through SpeedyBee F405 Mini FC/ESC combo
 - There are no subsystems respective to the drone electrical system due to key the bottleneck design.
 - BETAflight to be used to generate LUA scripts for powersaving functionality
 - Expected mission lifetime: ~.45 hours full throttle. (27.1 minutes)
 - ~3.7 hours idle time.

Drone Electrical System: Motors

- Motors: Diatone Momba Toka 1404 3000Kv Brushed Motors
 - o1.1 A power draw per each at full power (4.4A drain total)
 - Change from PDR:
 - Turn rate (Kv) was lowered to increase torque, allowing for the drone to use larger props and become more efficient than the previous design.

Drone Electrical System: Navigation

• GPS Failsafe:

 During rocket setup, GPS coordinates will be saved and locked by Flight Controller (arming process). In case of disconnect from radio controller and drone. Return to Sender (RTS) protocol will be enabled.

• Controller (TX12) GPS failsafe:

 If radio inputs are cutting in and out (connection issue), controller GPS will be sent to drone and RTS will be enabled until user disables (any controller input)

Drone Electrical System: Video

- VTX: ImmersionRC Ghost Hybrid VTX

 Frequency: 5.8GHz (Up to 10km range)
 Power Drain and Output Power (outside of pit mode): 600MW at 200mA drain
- Camera: Runcam Phoenix Nano 2
- Notes:

 BetaFlight Script will be used to enable VTX upon descent, saving battery power. If the script is faulty, Channel 10 of the TX12 radio will be used to manually switch the VTX out of pit mode into max operating power.

Drone Electrical System: Receiving Video

 Receiver + Goggle Combination: Fat Shark Scout 5.8GHz VRX

Antenna: Lumenier AXII Directional Patch 5.8GHZ RHP

 Notes: This is identical to a traditional FPV drone setup. The VTX/VRX combination was suggested and tested by FPV Knights, allowing up to 10km video transmission range from ground.

Drone Electrical System: Prelaunch

• Drone Armed:

 $\odot \textsc{Before}$ rocket launch, drone is armed.

- Coordinates of drone are locked. (gps failsafe)
- VTX is put into pit mode. (battery consumption)
- ELRS receiver is put to sleep. (battery consumption)

• VTX Configured to PIT mode:

 Besides the motors, the VTX is expected to drain the most power from battery. Putting the VTX into PIT mode will reduce it to a 25mA power drain.

Drone Electrical System: Mission Active

- VTX Power Change:
 - Betaflight script will be using the Flight Controller altimeter to carry out specific actions upon descent.
 - 800ft: ELRS Receiver is powered on
 - 700ft: VTX is switched to max power. (600mW)
- Altitude Lock:

 To avoid the drone crashing if no signal from radio, upon descent (after released from canister), the drone will hover at 200ft using the onboard altimeter. (this will be disabled if radio control is linked)

Drone Electrical System: Visual Representation

Basilisk - 2024 FAR51025

Drone Electrical System: Controller

- Controller: Radiomaster TX12 (Mode 1)
- Transmitter: Happymodel Micro 900RX ELRS
 - \circ This is the exact same setup as rover.
 - Each controller must be flashed to respective receiver to avoid mismatch (will be done during assembly phase).
 - Radiomaster TX12 can be programmed using Betaflight, and luascripts will be written and passed through Betaflight (Channel 10 for VTX manual control).

Drone Electrical System Visual Representation

• F405 Electronic Speed Controller

Happymodel ES900RX

Drone Electrical System: Visual Representation

• GOKU Mini GPS:

• ImmersionRC Ghost Hybrid VTX:

Drone Electrical System: Battery

- RDQ Series 2200mAh
 3s 11.1V LiPo
 - 20 minutes mission lifetime with full activation of Motors.
 - All power and ground supplied via FC/ESC.
 - Charge Rate: 80C
 - Equipped with a XT60 power connector.

Drone Electrical FMECA

Part	Failure	Criticality	Effect	Mitigation
FC/ESC	Wire Disconnect / incorrect Installation	High	Possible Damage / Component Failure	Careful Assembly, Testing
ALL PARTS	Assembly Damage	Medium	Malfunctioning /Damaged System	Mechanical Testing, Demonstration
VTX	Overheating	Low	Reduced Efficiency of Transmission	Testing, Demonstration
Battery	Overheating / Overcharging	High	Possible Combustion/ Explosion / Off Gassing	Testing, Demonstration

Remote Sensing Subsystem

Measures	TPM Value	Units	Verification Method
Fin Dimensions	3" x 1.5" x 2.3"	in	Inspection
Horizon Dimensions	0.98" x 0.51" x "0.98	in	Inspection
Total Weight	1	lb	Inspection
Operating Time	3	hr	Analysis, Testing, Demonstration
Video Storage	16	hr	Analysis, Testing, Demonstration

Fin Camera

Horizon Camera

Basilisk - 2024 FAR51025

Remote Sensing (Architecture)

Basilisk - 2024 FAR51025

Remote Sensing Interface Diagram

Remote Sensing CONOPS

Remote Sensing Components

• Camera

Phoenix 2 Run Cam
1000 TVL ~ 720p Camera
2.0 Aperture ~ Less Blur and Noise

• DVR

Using 32Gb Sd Card
2Gb ~ 1hr of Video
Local Saves Video Every 5 Minutes

DVR Mount

- DVR Mount
 - Epoxied on the inside of the airframe
 Allows for DVR to be mounted and increase stability of the system
 Allows for heat set threaded inserts for mounting

Remote Sensing Components

 Fin Camera Shield Made of Polycarbonate Filament oCurved to be epoxied outside of the airframe **OBuilt-in Camera Mount** Small hole in airframe needed for wires

Remote Sensing Components

- Horizon Camera Mount
 - Made of Polycarbonate
 Filament
 - Curved to fit to be epoxied to the inside of the airframe
 - Only a 12mm hole needed in airframe for lens

Remote Sensing FMECA

Part	Failure	Criticality	Effect	Mitigation
Camera	Electrical Disconnect	Medium	Loss of Video; Possible Mission Failure	Wrap Wire around screw, Testing, Demonstration
DVR	Electrical Disconnect	Medium	Loss of Video; Possible Mission Failure	Wrap Wire around screw, Testing, Demonstration
Camera Mount	Mechanical Failure	Low	Video Stabilization is Decreased; Possible Loss of Video	Testing, Demonstration

Questions?

Thank You for Listening!

Aerostructures CDR FAR10k Basilisk

Aerostructures System

CAD and Open Rocket KXR FAR10k Liquid 2024

Aerostructures Interface Diagram

Aerostructures Architecture

UCF

Aerostructures Function

- Package all vehicle systems into a:
 - Flyable
 - Light Weight
 - Aerodynamic Structure

• Main interface for all systems of the vehicle

Aerostructures System Verification Plans

- Visual/Digital Inspection of System Interfaces
 - Accurate CAD Assembly
- FEA and ANSYS Component Load Analysis (Analysis)
- Test Article
 - Airframe and Fin Test Coupons Tested In UTM
- Dry Fitting Components (Demonstration)
- Confirmation of Dimensions and Mass (Inspection)
- Dual Deploy Recovery System Test (Test)
 - Black Powder and Shear Pin Tests

Aerostructures CONOPS

Aerostructures System Cost

Aerostructures TPM's

Measure	TPM Value	Units	Verification Method
Snatch Force	1954	lbf	Demonstration
Max Bending Moment	7173	lb-in	Analysis
Max Compressive Load	21309	lbf	Analysis
Lateral Shear	122	lbf	Analysis
Drag Coefficient	0.75	n/a	Analysis

Aero TPMS Cont. (Dimensions)

Measure	TPM Value	Units	Verification Method
Total Length	18.3	Ft	Inspection
Inner Diameter	6	in	Inspection
Total Wet Mass	145	lbf	Inspection
Dry Mass	66	lbf	Inspection
Stability	12% (3.8)	CAL	Simulation

Aerostructures TPM's

 Apogee:
 10346 ft

 Max. velocity:
 778 ft/s
 (Mach 0.689)

 Max. acceleration:
 2.84 G

Aerostructures System FMECA

Sub-System	Failure	Criticality	Effect	Mitigation
Recovery	Failure to Recover	Medium	Failure to Deploy Parachutes and Payload	Testing Campaign and Designed Redundancy
Internal / External	Structural Failure During Flight	High	Rapid Unscheduled Disassembly	FEA and Hand Calculations. Coupon Testing
Flight Dynamics	Instability During Flight	Medium	Rocket Becomes Instable During Flight	Design and Testing of Fin Coupons

Recovery Component Breakdown

KXR FAR10k Liquid 2024

Recovery Interface Diagram

Recovery Functional Requirements

Requirement	Requirement Type	Verification Method
The Recovery System shall have redundancy	Functional	Demonstration
The Recovery System shall be visible during descent	Functional	Demonstration
The Recovery System shall have a dual-deploy system	Functional	Inspection
The Recovery System will create a safe controlled descent for the vehicle	Functional	Demonstration

Recovery TPM's

Measure	TPM Value	Units	Verification Method	
Snatch Force	1953.439059	Lbs.	Demonstration	CKET
Size of Recovery compartment	36" main+11" drogue	in	Inspection	
Packing Length of Chutes	199.9	cu. in.	Inspection	at U
Descent Rate	D: [75] M: [20]	Ft/s	Test	
Shock Chord Length	1345	In	Inspection	

Recovery Breakdown

Main Chute

- □ We are using a Skyangle Classic Cert 3 XXL as our main parachute
 - □ Uses 4 shroud lines
 - □ CD of 2.92, which gives us a final descent speed at 21.4 ftps
 - Deploys at 800ft
 - □ Total flight time of 220s (3 minutes 40 seconds)
 - Used OpenRocket to validate, using coordinates of the launch site, 100 degree ambient temperature and up-to-date vehicle characteristics
- □ We are attack the parachutes with fisherman knots and quick links
- □ We are using DB-XXL Main Deployment Bag as our fire blanket
- □ Deploy velocity at 76ftps

C3/XXL \$239.00

QUANTITY - 1 +

Drogue

44" SkyAngle Classic

\$60.00 1 We are also looking at reusing a parachute from another project as our main to save costs; final decision is pending on our final cost vs budget and discussions with the other projects.

KNIGHTS EXPERIMENTAL ROCKETRY

- Descent speed of 75fps
- □ Coefficient of Drag 1.87
- Deploys at apogee
- Nominal deploy velocity at 0 ftps, horizontal velocity expected to be below 100 fpts, will depend on angle off the rail and wind

- □ Used OpenRocket to find a parachute in acceptable price
 - range with a descent speed of 75ftps
- □ We attach the Drogue shroud lines to the quick link through
 - Alpine Butterfly Loop
- We are using Medium SkyAngle Deployment Bag as our fire blanket.

Parachute Drift Analysis

According to National Oceanic and Atmospheric Association, for Mojave, CA:

- Max Windspeed 13mph
- Average Windspeed 7mph

Average Windspeed: Expected drift radius of under 1000 ft with wind conditions of 7.5mph Both drift simulations take weathercocking into account with a 90* launch angle, the real radius will depend on launch angle of the rail and if the rocket remains straight off the rail

Peak Windspeed: Expected drift radius of under 500 ft with wind conditions of 13mph

Parachute Packing lengths

Drogue chute packing volume: Under 3 inches in length in a 6" airframe

Main chute packing volume: ²² 6 inches in length in a 6" airframe

KXR FAR10k Liquid 2024

Shock Cords

The recovery system will contain:

- 117 ft of ¼ " Kevlar shock cord
- 8 quick links
- 4 Alpine Butterfly Loops
- 4 Non-slip Mono Knots

Each knot will be epoxied for extra strength.

These components will provide the best chance of the system working as intended and not failing during execution.

Shock Cords

We are using quick links and two types of fisherman knots to prevent tangling of the payloads.

□ There will be rails developed by payloads inside to prevent tube knocking.

We will have a beacon in the main compartment, but we are waiting on LTI for dimensions.

1/4" Kevlar shock cord Max Load 3000 lbs Price: \$143.52 (144 yards)

1/2 in. Zinc-Plated Quick Link Max Load 3,300 lbs Price: \$50.16 (8)

Non-Slip Mono Knot

Alpine Butterfly Loop

Shock Cords

Drogue: Total Shock cord length (3 x length of Rocket): 648"

Drogue to upper body: 219"

Drogue to lower body: 429"

Clearance from upper body to lower body: 140" (Safety Factor of 2)

Rocket length: 216"

Main: Total Shock cord length (3.5 x length of Rocket): 756"

Parachute to Payload 128"

Distance between payloads: 50" Sf(3)

Payload to Nosecone: 113" Sf(1.5)

Nosecone to Coupler: 176" Sf(1.7)

Recovery and Payloads Interface

Payload dimensions

- 5.5" Diameter
- Rover Canister: 11" length
- Drone Canister: 11"

Recovery Dimensions

- 6" Diameter
- 36" Length

Shock Cord Length
117 ft of ¼ " Kevlar shock cord

Available space for Recovery after Payloads: 14" length

Part	Failure	Criticality	Effect	Mitigation
Shock Chords	Snap	High	No Controlled Descent	Apply Safety Factor
Quick Links	Snap	High	No Controlled Descent	Apply Safety Factor
Shock Chords	Snap due to stress caused by heat	High	No Controlled Descent	Kevlar Shock Cord (heat resistant)
Shock Chords	Tangling With Payloads	High	Damage to the Rocket	Rail System for Payload
Shock Chords	Improper Shock Cord Lengths	Medium	Damage to the Rocket	Verify Lengths via Testing prototype

Recovery Coupler

Dimensions

- Outer Diameter 5.998"; Inner Diameter 5.820"
- 14 inch length

KXR FAR10k Liquid 2024

Coupler Costs

Material	Dimensions	Cost
G12 Fiberglass tube	Outer Diameter 5.998"; Inner Diameter 5.820"	\$99.00 madcowrocketry.com
4 Zinc-Plated Threaded Rod	3/8 in16 tpi x 24 in. Zinc-Plated Threaded Rod	\$3.47 Home depot
High-Strength Steel Nylon-Insert Locknut (20 pack)	Grade 8, 3/8"-16 Thread Size	\$4.50 Mcmaster.com
18-8 Stainless Steel Washer (100 pack)	3/8" Screw Size, 0.406" ID, 0.875" OD	\$7.33 Mcmaster.com
PVC Pipe	3/8 in. x 5 ft. White PEX-B Pipe	\$2.97 Homedepot
Shearpins (100 pack)	Nylon Pan Head Screws Phillips, 4-40 Thread, 1/2" Long (100 pack)	\$8.97 Mcmaster.com
Helical Insert (10 pack)	18-8 Stainless Steel Helical Insert, 4-40 Right- Hand Thread, 0.280" Long (10 pack)	\$4.71 Mcmaster.com
	Total	

Recovery Coupler

- Shear pins
- 10 Nylon Pan Head Screws Phillips for Main parachute deployment
- 8 Nylon Pan Head Screws Phillips for Drogue parachute deployment
- Helical inserts to prevent thread stripping

		DOIL Sele	ctor (select yellow box for drop	aown)				
	Bolt Type 🛛 🗠	Max Force (lbs)	Min Force (lbs)	MinorA (in^2)	Max Stress (psi)	Min Stress (psi)		
Drogue	#4-40	76	50	0.005191238	14640.05201	9631.613167		
Main	#4-40	76	50	0.005191238	14640.05201	9631.613167		
		Inj	puts					
Rocket ID (drogue) (in) 🛛 🗠	Rocket ID (main) (in)	Empty Length (drogue) (in) 🚩	Empty Length (main) (in) 🛛 🖂	Launchpad Height (ft)	Rocket Apogee (ft)			
6	6	11	30	2762	16000			
		Calculate	d Outputs					
Temperature1 (F)	Temperature2 (F)	Atm. Pressure1 (psi)	Atm. Pressure2 (psi)	Ref Area Drogue (in^2)	Ref. Area Main (in^2)			
49.16728	-7.79272	13.30169173	7.127427439	28.27433388	28.27433388	< Temp/Pressure equation	s work up to 36152ft abov	ve sea Ivl
Dro	gue		Ma	in				
Drag Top (lbs)	<mark>66.49</mark>		Drag Top (lbs)	49.67	< Add up drag below and	d above separation point (wh	nere it shears) to find you	r drag diff.
Drag Bottom (lbs)	105.81		Drag Bottom (lbs)	105.81				
Delta Drag (lbs)	39.31984546		Delta Drag (lbs)	56.13761346				
Sep. Force (lbs)	174.57321		Sep. Force (lbs)	174.57321				
Bolt Safety Factor	1.5		Hanging Section Weight (lbs)	20	< Weight of section bein	g held by main shear bolts a	fter drogue deployment	
Bolts	4.277861109		Bolt Safety Factor	2				
Bolts (rounded w/ SF)	8		Bolts	4.614216469				
Black Powder Safety Factor	2		Bolts (rounded w/ SF)	10				
Black Powder (grams)	3.448608579		Black Powder Safety Factor	1.8				
Black Powder (SF) (grams)	6.9		Black Powder (grams)	11.75662016				
			Black Powder (SF) (grams)	21.2				

KXR FAR10k Liquid 2024

Recovery Avionics General Architecture

□ Recovery system will use a fully dual redundant avionics

system to deploy parachutes

□ Both altimeters are fully able to deploy both parachutes

- □ Both powered by 9v batteries
- □ Nominal powered-on period of over 15 hours
- □ Avionics sit on a sled within the recovery coupler

❑ A pull-pin will activate the avionics system before flight, accessible from outside of the coupler; through vent hole

Recovery Avionics - Altimeters

- □ Stratologger CF Already owned by KXR
 - □ 1.5mah consumption, over 100 hours of nominal life
 - □ Samples atmosphere 20 times per second
 - Dual-Deploy computer
- □ Missileworks RRC2+ Already owned by KXR
 - □ 35mah consumption, 15 hours of nominal life
 - Dual-Deploy computer
- □ Back-up: Stratologger

FMECA

Part	Failure	Criticality	Effect	Mitigation
Threaded Rods	Shearing	High	Coupler Failure	PVC Piping to cover the rods, stronger nuts to withstand snatch force.
Altimeters	Detonating charges late	High	Parachute(s) deploy at high velocity or too late	Ground testing of altimeters
Altimeters	Does not detonate charges	High	Parachute(s) do not deploy	Ground testing of altimeters
Parachute	Parachute failure (rip, does not unfold)	High	Unsafe descent	Proper packing procedure, analysis of velocity at deployment

Recovery Bulkheads

- Materials: G10 (FR4) Fiber glass plate, Black Oxidized Steel U-bolts, ½ " nuts and washers, wire quick connect, and wood Bulkhead lip
- □ Safety factors:
 - U-bolt- 1.02 Excel calculated
 - Bulkhead Plate: 13.7 Excel calculated
 - □ Shear force per bolt: 211 Excel calculated
- Due to the low SF there will be 2 U-bolts to counteract it
- □ With 2 U-bolts the force will be distributed over a larger surface area
- □ Forces: Snatch Bolt shear (1389 PSI), Shear Force per bolt (14.27 PSI)

Snatch Force (N)	Snatch Force (lbs)	SF	Focre*SF (lbs)
5606.019256	1260.283264	1.55	1953.439059

0

0

0

Ø 5.87

ww

KXR FAR10k Liquid 2024

Recovery Bulkheads

□ Attachments:

- □ Recovery Coupler -3/8" rods with lock nuts to secure
- □ Body Bulkheads secured in place by G12 couplers

in body sections

- □ Verifications Excell calculators and physical tests
 - Using values from open rocket, other calculators, and manufacturers
 - Physical Test
- Forces applied:
 - □ Main areas: U-bolt, threads, and bulkhead plate
 - □ Transfer of Forces: Quick link > U-Bolt > back plate > Lip > BH Plate

0.37

Ø5.64

FMECA

Part	Failure	Criticality	Effect	Mitigation
U-bolt	Snaps	High	Vehicle Disassembly	The U-bolt has a Safety factor 1.02 thus 2 U-bolts are being used
Bulkhead Plate	Bolt Tear	High	Vehicle Disassembly	13.7 Safety Factor on the Bulkhead
				at UCF

Bulkhead Cost

Part	Quantity	Cost	
U-bolt/nuts(2)/back plate	8	\$46.53	
G10(FR4)	1x0.125" x 12" x 24" sheet	\$42.11	AL ROCKETRY
Nuts ½ in	16	\$11.04	
Washers 1/2 in	16	\$11.04	
Wire quick connect	2	\$12.99	
Hardpoint wood	1 2ft x 4ft plank	\$5.15	

Black Powder

- Calculated Black powder by using values from open rocket (Fin height root chord Tip Chord & Pressure Base and Friction Coefficient) plugging into the aerodynamics forces we get drag top and bottom for drogue and main.
- □ Then we use drag top and bottom and use the black powder calculator
 - □ We used black powder safety values of 2 for drogue and 1.8 for main
 - □ Bolt safety of 1.5 for drogue and 2 for main.
 - □ We also got Rocket ID, length and hanging sections weight from Open rocket
- □ We will be using 6.9 Grams of black powder for the drogue and 21.2 grams of black powder for the Main

Bolt Selector (select select select select non for drandnum)								
	Bolt Type	Max Force (lbs)	Min Force (lbs)	MinorA (in^2)	Max Stress (osi)	Min Stress (psi)		
Drogue	#4-40	76	50	0.005191238	14640.05201	9631.613167		
Main	#4-40	76	50	0.005191238	14640.05201	9631.613167		
_	_	Ing	puts	_	_			
Rocket ID (drogue) (in) 🔛	Rocket ID (main) (in)	Empty Length (drogue) (in)	Empty Length (main) (in)	Launchpad Height (ft)	Rocket Apogee (ft)			
6	6	11	30	2762	16000			
	_	Calculate	d Outputs					
Temperature1 (F)	Temperature2 (F)	Atm. Pressure1 (psi)	Atm. Pressure2 (psi)	Ref Area Drogue (In^2)	Ref. Area Main (in^2) 🗠			
49.16728	7.79272	13.30169173	7.127427439	28.27433388	28.27433388	< Temp/Pressure equation:	s work up to 36152ft abo	ve sea lvi
Dro	gue		Ma	'n				
Drag Top (lbs)	66.49		Drag Top (Ibs)	49.67	< Add up drag below and	above separation point (wh	tere it shears) to find you	r drag diff.
Drag Bottom (lbs)	105.81		Drag Bottom (Ibs)	105.81				
Delta Drag (lbs)	39.31984546		Delta Drag (lbs)	56.13761346				
Sep. Force (lbs)	174.57321		Sep. Force (Ibs)	174.57321				
Bolt Safety Factor	1.5		Hanging Section Weight (lbs)	20	< Weight of section being	held by main shear bolts a	fter drogue deployment	
Bolts	4.277861109		Bolt Safety Factor	2				
Bolts (rounded w/ SF)	8		Bolts	4.614216469				
Black Powder Safety Factor	2		Bolts (rounded w/ SF)	10				
Black Powder (grams)	3.448608579		Black Powder Safety Factor	1.8				
Black Powder (SF) (grams)	6.9		Black Powder (grams)	11.75662016				
			Black Powder (SF) (grams)	21.2				

	Coefficient Inputs								
Component ~	Pressure Co	Base C. 👻	Friction C _c ~	Total C _c ~	Drag (lbf 🗠	Cn d 🗠	Cn 🔍	Lift (Ibf. ~)	
Nose Cone	0.04	0.00	0.03	0.07	26.20	0.00	0.00	0.00	
nose cone shoulde	0.00	0.00	0.01	0.01	1.96	0.00	0.00	0.00	
payload body tube	0.00	0.00	0.06	0.06	21.51	0.00	0.00	0.00	
ecovery switch rin	0.00	0.00	0.01	0.01	1.96	0.00	0.00	0.00	
ower recovery tub	0.00	0.00	0.04	0.04	14.86	0.00	0.00	0.00	
n mount	0.00	0.00	0.03	0.03	13.30	0.00	0.00	0.00	
trogen valves mou	0.00	0.00	0.02	0.02	6.26	0.00	0.00	0.00	
fuel tube	0.00	0.00	0.02	0.02	7.04	0.00	0.00	0.00	
fuel valves mount	0.00	0.00	0.02	0.02	6.26	0.00	0.00	0.00	
ox tube	0.00	0.00	0.06	0.06	21.51	0.00	0.00	0.00	
cc mount	0.00	0.00	0.02	0.02	6.26	0.00	0.00	0.00	
trapezodial fin set	0.02	0.00	0.01	0.03	9.78	0.00	0.00	0.00	
boat tail	0.00	0.07	0.02	0.09	20.55	0.00	0.00	0.00	
Total	0.05	0.07	0.31	0.44	157.44	0.00	0.00	0.00	
Constant Inputs									
Density of air at	Max valocity	outer	Cross-sectional	α (angle of	Ein Aroa		Ein Root Chard	Ein Tin Chord	Fin
sea level	wax velocity	diameter	Area	attack)	rin Area	6	Fin Root Chord	Fin Tip Chora	Height
slugs/ft^3	ft/s	ft	ft^2	degrees	ft^2	ft/s^2	ft	ft	ft
0.00238	1001.00000	0.51667	0.32844	0.00000	0.18960	32.17405	0.58	0.38	0.40

Charge Wells

- 3D printed charge wells, Wing nuts 3/8", electrical tape, E-match, quick connect, and Wiring
- □ Charges will be packaged in fingers of gloves
- Then be placed in in well with electrical tape to secure it to the E-match and prevent any movement
- Igniting the charge the wires from the altimeter will be run through a quick connect to a small hole in the bottom of charge well

PM(g)	BD(g/cm^3)	PV (cm^3)	PV(in)	Actual Volume
21.1	1.7	12.4117647	0.757412	1.570796327
				0.964367295
2.356194				

PV = PM / BD P V = PM /B D Where PV is the Powder Volume (m^3) PM is the powder mass (g) BD is the bulk density (g/m^3) To calculate the powder volume, divide the powder mass by the bulk density.

FMECA

Part	Failure	Criticality	Effect	Mitigation
BP Fuse	Fails to ignite	High	Separation fails	Proper wiring
BP Amount	Too much BP	High	Separation fails	BP testing
BP Amount	Too little BP	High	Separation fails	BP testing

Recovery System Manufacturing

- Bulkheads
 - Made from G10 fiberglass
 - Bulkheads will be designed through CAD
 - The drawing file will be sent to a fabrication center to be laser cut
 - U-bolts will be bought from McMaster
 - Switchbands
 - Made from carbon fiber pre-preg
 - The 2" band will be cut from the lower recovery tube and the nitrogen tank tube
 - These tubes can be manufactured longer than needed to allow the switchbands to be cut from them

Internal Structures Interface Diagram

Internal Structures Functional Requirements

Requirement	Requirement Type	Verification Method
The Internal Structures sub-system shall support and protect the Propulsion and Payload systems	Functional	Analysis
The internal Structures sub-system shall withstand the loads and vibrations acting on the rocket	Functional	Analysis
The Internal Structures sub-system shall house and provide access to the internal components of the vehicle	Functional	Inspection
The Internal Structures sub-system shall allow separation between motor, payload and recovery section of the vehicle.	Functional	Inspection
The Internal Structures sub-system shall withstand the weight of the propulsion system [64 lbs] and the payloads [10 lbs]	Functional	Analysis

Internal Structures Technical Performance Measures

Total Compression Loads16,941.311psiForce Calculator (Aero Loads)Snatch Force1,260.283 (No S.F)IbfForce Calculator (Snatch Force)1,953.439 (S.F 1.55)1,953.439 (S.F 1.55)Force Calculator (Aero Forces)M1 Bending Max-3,726.961psiFar Force Calculator (Aero Forces)M2 Bending Max5,742.241	Measure	TPM Value	Units	Verification Methods
Snatch Force1,260.283 (No S.F)IbfForce Calculator (Snatch Force)1,953.439 (S.F 1.55)1,953.439 (S.F 1.55)Far Force Calculator (Aero Forces)M1 Bending Max-3,726.961psiFar Force Calculator (Aero Forces)M2 Bending Max5,742.241CG Force2.84G'sOpen RocketShear Force (V1)67.690IbfForce Calculator (Aero Force Loads)Shear Force (V2)221.527Force Calculator (Aero Force Loads)Bearing Stress (Tensile)2,367.805psiForce Calculator (bolt sizing)Bearing Stress (Compression)68,105.684CC	Total Compression Loads	16,941.311	psi	Force Calculator (Aero Loads)
M1 Bending Max-3,726.961psiFar Force Calculator (Aero Forces)M2 Bending Max5,742.241G Force2.84G'sOpen RocketShear Force (V1)67.690lbfForce Calculator (Aero Force Loads)Shear Force (V2)221.527Bearing Stress (Tensile)2,367.805psiForce Calculator (bolt sizing)Bearing Stress (Compression)68,105.684	Snatch Force	1,260.283 (No S.F) 1,953.439 (S.F 1.55)	lbf	Force Calculator (Snatch Force)
G Force2.84G'sOpen RocketShear Force (V1)67.690lbfForce Calculator (Aero Force Loads)Shear Force (V2)221.527	M1 Bending Max M2 Bending Max	-3,726.961 5,742.241	psi	Far Force Calculator (Aero Forces)
Shear Force (V1)67.690IbfForce Calculator (Aero Force Loads)Shear Force (V2)221.527Bearing Stress (Tensile)2,367.805psiForce Calculator (bolt sizing)Bearing Stress (Compression)68,105.684	G Force	2.84	G's	Open Rocket
Bearing Stress (Tensile)2,367.805psiForce Calculator (bolt sizing)Bearing Stress (Compression)68,105.684	Shear Force (V1) Shear Force (V2)	67.690 221.527	lbf	Force Calculator (Aero Force Loads)
Dealing Stress (Compression) 60,103.004	Bearing Stress (Tensile)	2,367.805	psi	Force Calculator (bolt sizing)
	Bearing Stress (Compression)	68,105.684		

Internal Structures Component Breakdown

UCF

Chassis Technical Performance Measures

Measure	TPM Value	Units	Verification Methods
Total Compression Loads	16,941.311	psi	Force Calculator (Aero Loads)
Snatch Force	1,260.283 (No S.F) 1,953.439 (S.F 1.55)	lbf	Force Calculator (Snatch Force)
M1 Bending Max M2 Bending Max	-3,726.961 5,742.241	psi	Far Force Calculator (Aero Forces)
G Force	4.24	G's	Open Rocket
Shear Force (V1) Shear Force (V2)	67.690 221.527	lbf	Force Calculator (Aero Force Loads)
Bearing Stress (Tensile) Bearing Stress (Compression)	2,367.805 68,105.684	psi	Force Calculator (bolt sizing)

Airframe Shear Stress

Equations from Nakka rocketry assume a distributed load acting on the body during flight.

$$w_{2} = \frac{N_{F}(2x_{2} + x_{1}) - N_{N} x_{1}}{x_{2}^{2} + x_{1} x_{2}}$$
$$w_{1} = \frac{N_{N} + N_{F} - w_{2} x_{2}}{x_{1}}$$
$$V(x) = N_{N} - w_{1} x \qquad 0 \le x \le x I$$
$$V(x) = V_{1} - w_{2}(x - x_{1}) \qquad x I < x \le L$$

Airframe Bending Stress

Chassis

- Aluminum Coupling Section goes between the nitrogen tank and the fuel tank
- 8" long steel threaded rods provide an opening for access to regulator to avoid moving the entire tube and wearing out threads
- Aero panels can cover up the exposed plumbing and take little load during flight
- The panels will be made out of 3D printed polycarbonate

Design Evolution

Weight Loss

- Original: 1.85 lbsLightened: 1.15 lbs
- Weight loss of 0.7 lbs per coupler, or 40%
 Adds up to almost 3 lbs across all couplers

KXR FAR10k Liquid 2024

Chassis

ltem	Material	Stock and Machining Costs	Quantity	Total	Resource	
Chassis	6061 T6 Aluminum	\$75 for stock 3 hours per coupler \$35 hourly	1	Estimated \$360	Quotes provided by UCF Machine Shop	R
3/8" threaded rods	Steel	\$4.24	4	Estimated \$18	https://www.homede pot.com/p/5-8-in-11- tpi-x-12-in-Zino- Plated-Threaded- Rod- 802017/204274006	

FMECA

Part	Failure	Criticality	Effect	Mitigation
Coupler Tube	Bolt tear out	High	Joined sections of the airframe come apart during flight	6" shoulder length on carbon tubes
Coupler Tube	Bearing Stress	High	Bolt connections become loose during flight	Bigger bolts and better material for those bolts
Threaded Rods	Buckling	High	Component bends and fails during flight	Using different strut geometry, increasing the number of threaded rods or the diameter
All	Galvanic corrosion	High KXR FAR10k Liquid 2024	Oxidizes the Aluminum	We will apply a coat to the Aluminum to stop the corrosion

Thrust Plate TPMs

Measure	TPM Value	Units	Verification Methods	
Total Compression Loads	16,941.311	psi	Force Calculator (Aero Loads)	
Snatch Force	1,260.283 (No S.F) 1,953.439 (S.F 1.55)	lbf	Force Calculator (Snatch Force))CKE
G Force	2.84	G's	Open Rocket	
Thrust Force	539.991	lbf	Force Calculator (Aero Force Loads)	at
Bearing Stress (Tensile) Bearing Stress (Compression)	2,367.805 68.105.684	psi	Force Calculator (bolt sizing)	
Shear Stress (Tensile) Shear Stress (Compression)	1,396.641 15,234.508	psi	Force Calculator (bolt sizing)	

Thrust Plate

- Thrust Plate interfaces with aluminum struts coming from the injector
- Aluminum coupler tube attaches to the thrust plate in the middle to allow for attachment of the boat tail and one of the main body tubes
- The oxidizer bulkhead is attached, flushed with the thrust plate
- An indent of 3/8" is made to allow the fuel line to pass through

Thrust Plate Cost Breakdown

Part	Material	Stock and/or Machining Costs or	Quantity	Total	Link (not hyperlink)	
Thrust Plate	6061 T6 Aluminum	Estimation of 20- 35 dollars for stock 3.5 to 4 hours of machining time Hourly Machine Charges of 35 dollars	1	Estimated \$170 dollars	Quotes from UCF machine shop	ROCKETRY
Aluminum Tube (6x.125x5.75)	6061 T6 Aluminum	\$44.37	1	\$44.37	https://www.me talsdepot.com/ aluminum- products/alumi num-round- tube	at UCF

Compression and Tensile Stresses

Thrust Force (lb) Cro		Tube oss-sectional Area (in^2)		Engine Thrust Compression (PSI)		
539.9910813 1		1.	257755468		429.32	91462
			Force Drag (lb)	Cri	Tube oss-sectional Area (in^2)	Compressive Drag (PSI)
			429.0488383	1	.257755468	341.1226181
	Mass (lb)	Max Gs	Cri	Tube oss-sectional Area (in^2)	Mass inertia compression (PSI)
	145		2.84	1	.257755468	14243.23844
Engine Thrust Compression (PSI)	Max Ben Stress on (PSI)	ding Body	Compressive Drag (PSI)	0	Aass inertia ompression (PSI)	Total Compressive (PSI)
429.3291462	1927.620	0763	341.1226181	1	4243.23844	16941.31097

Main			
Snatch Force (N)	Snatch Force (lbs)	SF	Focre*SF (lbs)
5606.019256	1260.283264	1.55	1953.439059
Drouge			
Snatch Force (N)	Snatch Force (lbs)	SF	Focre*SF (lbs)
347.5449334	78.13120915	1.5	117.1968137

Compression Loads are calculated using • equations from Nakka Rocket

- Compressive stress due to mass inertia
- Compressive stress due to drag force

Tensile stress from snatch force during recovery

FMECA

Part	Failure	Criticality	Effect	Mitigation
Coupler Tube	Bolt Shear	High	Thrust Plate and or joined sections of the airframe come apart	6" shoulder length on body tubes 3" of shoulder length into the boat tail
Coupler Tube	Bearing Stress	High	Bolt connections become loose	Bigger bolt diameter or stronger material
Thrust Plate	Bolt shear	High	Propulsion system connections become loose during flight	Using bigger bolt diameter and stronger material
Thrust Plate	Deformation	High	Propulsion system could collapse into the airframe	Adding thickness to the thrust plate or changing material

Centering Rings

- To prevent translation of the tanks and the combustion chamber centering rings will be placed around the propulsion system.
- Centering rings will be placed around the combustion chamber as well as the fuel and oxidizer tank.
- Will be cut out of plywood
- Cost: \$40 for a sheet of plywood

COTS Couplers/ Bulkheads

- Sections that won't require a chassis near the propulsion system will be joined together using fiberglass couplers
- Above the nitrogen tank, two bulkheads will secure the PCB and the ACB using fiberglass couplers and G10 plates
- These bulkheads will also be used to secure two cameras providing a horizon view during flight and a camera pointing down towards the fins

ltem	Full Item Description	Cost	Quantity	Total	Link (not hyperlink)
G12 Fiberglass coupler tube	6" fiberglass tube	\$60.00 each	2	\$120.00	https://www.co mpositewareho use.com/index. php?route=pro duct/product&p roduct_id=125

FMECA

Part	Failure	Criticality	Effect	Mitigation
Centering Rings	Cracking or disassembly	Medium	Risks the propulsion system sloshing inside the airframe	Multiple centering rings and/or thicker wood
Bulkeads	Cracking or disassembly	Medium	PCB, ACB, and cameras could risk collapsing inside the airframe	Using larger bolts to support the bulkhead

Bolt Bearing Stress

Compressive Loads Aluminium

Bearing Stress (psi)	Saftey Factor	
68185.68485	0.527970058	

Tensile Loads Aluminium

Bearing Stress (psi)	Saftey Factor	
2367.80492	15.20395523	

Bolt		
Bolt Type Wall thickness (in)		SF of Bolts
1/4 - 20	0.2	1.75

Airframe will be secured using 10 ¹/₄-20 steel bolts at all jointing sections.

$$f_{br=} \frac{F_s}{D_m t}$$

Bolt Tear Out

Bolt Diameter (in)		Edge distance (in)				
	0.25				0.5	
F	Bolt Diame	ter (in)		Minimum Edge distance (in)		
	0.25				0.275	
	0.23)			0.575	
Com		Leede D	alta			
Cor	npressive	Loads B	ons			
		Num of			М	
Number of Rolts	Num Bolts With SE	Bolts to			$F_{max} = f - f$	
DUILS	WITH SF	Number			-max D	
6.165516932	10.78965463	10				
					f = 2/5 for ten fasteners	
					<i>j 2,5</i> for ton hastoners	
Shear Stress	Shear Force	SE of Polts			Shear Stress Average = Applied Force / Area	
Per Bolt (PSI)	per Bolt (lb)	SF OF BUILS			or	
15234.50842	2130.802652	1.62192402			Shear Stress ave.= F/(π r ²)	
-					or	
	iensile Loa	ads Bolts	_		Shear Stress ave.= $4F/(\pi d^2)$	
		Num of Bolt	s		Where:	
Number of	Num Bolts	to even				
BOILS	WILL SF	Number			F	
0.565231209	0.989154616	1			Max # of holts: $n_{holts} = \frac{1}{2} \frac{bulk}{max} =$	
					bolts F	
			_		may	
Shear Stress	Shear Force	SE of Bolts			Max Force one bolt can take: $F_{bolt}^{max} = \tau_u \cdot A_{bolt}$	
Per Bolt (BSM)	per Bolt (lb)	51 OF BOILS				

1396.641954 195.3439059 17.69187518

Minimum Edge distance was • calculated for aluminum couplers on the chassis and on the aft end

KXR FAR10k Liquid 2024

Internal Manufacturing

- Chassis
 - Will purchase stainless steel threaded rods, which we will cut to specified lengths
 - The coupler adapter ("feet") of the struts will be machined out of 6061 aluminum in the machine shop
 - 6 hours to machine
 - 8 pieces in total
- Thrust Plates
 - Will be machined out of 6061 aluminum in the machine shop
- Bulkhead Rings
 - Will be made from COTS G12 couplers
 - We will cut the rings from the coupler and post-process as necessary

KNIGHTS EXPERIMENTAL ROCKETRY

Airframe Component Breakdown

KXR FAR10k Liquid 2024

Airframe Interface Diagram

Airframe Functional Requirements

Requirement	Requirement Type	Verification Method	
The Airframe Sub-system will be optimized for transonic speeds	Functional	Analysis	RIMENTAL ROCKETRY
The Airframe Sub-system will provide stability in flight	Functional	Analysis	at UCF
The Airframe Sub-system will withstand flight loads	Functional	Analysis	

Airframe TPMS

Measure	TPM Value	Units	Verification Method
Snatch Force	1954	lbf	Demonstration
Max Bending Moment	7173	lb-in	Analysis
Max Compressive Load	21309	lbf	Analysis
Lateral Shear	122	lbf	Analysis
Drag Coefficient	0.75	n/a	Analysis
Vibrations (Flutter)	3120	ft/s	Test/Analysis

External Structures Lay-Up

- Body Tubes, Boat Tail & Fins: 3K 2x2 twill weave prepreg carbon fiber
- Nose Cone: Wet-Lay Fiberglass Sleeves
- Methods of calculations : The Laminator, Classical lamination theory, Force Calculator
- Simulation: Ansys ACP

Polar Material Properties

Load Vector Scale Factors for Ply Failure (For Applied (+) and Reversed (-) Loads) Max Tsai Max Stress Strain Hill Hoffman Tsai-Wu Layer (+) (+) (+) (+) (+) 4.98 4.98 4,98 4.98 4,98 4,98 4,98 4,98 4,98 _____ _____ _____ _____ Min 4.98 4.98 4.98 4.98 4.98 Max Max Tsai Stress Strain Hill Hoffman Tsai-Wu (-) (-) (-) (-) (-) -5.30 -5.30 -5.31 -5.31 -5.31 -5.30-5.30-5.31-5.31-5.31-5.30 -5.30 -5.31 -5.31 -5.31 -5.30 -5.30 -5.31 -5.31 -5.31 -5.30-5.30-5.31 -5.31 -5.31 -5.30 -5.30 -5.31 -5.31 -5.31 Min -5.30 -5.30 -5.31 -5.31 -5.31

🧙 Analysis Results

The laminator F.S

Rock West COMPOSITES Prepreg - Carbon Fiber + 250F Epoxy - 39.4" Wide X 0.011" Thick - Standard Modulus - 3k 2x2 Twill Weave - (366 Gsm OAW) P/N 14033-D-GROUP Features & Benefits Product Specifications Additional Information Technical Data 250F RESIN . 2X2 TWILL WEAVE . 0.011" THICK . 39.4" (100CM) WIDE 6" x 6" Swatch . Ships Insulated & Frozen Sku: 14033-SAMPLE \$28.99 Linear Yard x Roll Width Provided In Continuous Length 5.9 \$69.79 \$65.59 \$62.39

KXR FAR10k Liquid 2024

External Structures Lay-Up

ltem	Number of Plies	Ply Orientation	Method	Raw Composites Cost
Body Tubes	6	0	Rolling	\$1277
Coupler Aero covers "skins"	2	0	Rolling	(integrated in Body tubes)
Nose Cone	6	45/45	Sleeves	\$74.9
Boat Tail	8	0	Rolling	\$234
Fins	24	0	Hand Laying	\$399
Total (+ Tax & Handling)	-	-	-	\$2310

3k 2x2 Twill CF

Bi-Axial FG Sleeve

Edge Distance S.F:

- = Distance / Minimum Safe distance
- = 3in / 0.375in = 8

Body Tube FMECA

Part	Failure	Criticality	Effect	Mitigation
Body Tubes/Nose Cone/ Boat tail/ fins	Structural Failure	High	Complete Mission Failure	Verify Layup and add SF as well as coupon testing
Body Tubes / Nose Cone / Boat Tail	Bolt Shear/ Tear out	High	Complete Mission Failure	Optimize the bolt locations

Nose Cone

- Parabolic Nose Cone
 - Achieved lowest coefficient of drag between Fluent & OpenRocket with $\mathrm{K}=0.7$
- Steel Tip
 - · Higher density than aluminum adds more stability
 - 1.56 lb

For
$$0 \le K' \le 1$$
: $y = R\left(\frac{2\left(\frac{x}{L}\right) - K'\left(\frac{x}{L}\right)^2}{2 - K'}\right)$ $\begin{array}{c} \mathsf{R} = 3.1 \text{ in} \\ \mathsf{L} = 24 \text{ in} \\ \mathsf{K} = 0.7 \end{array}$

Nose Cone TPM

Measure	TPM Value	Unit	Verification Method
Dynamic Pressure	4.1	psi	Force Calculator
Normal Force	30.37	lbf	Force Calculator
Total Drag	96.45	lbf	Force Calculator / ANSYS
Bolt Tear Out (Min-Safe-Distance)	2	in	Force Calculator
Total Compressive Force	371	lbf	Force Calculator

$$Q = \frac{1}{2} * Rho * V^{2}{}_{Max}$$
$$N_{NOSE} = q A \alpha (C_{N \alpha})_{N}$$
at UCI
$$D = \frac{1}{2} C_{D} \rho v^{2} A_{ref}$$

Nose Cone FMECA

Part	Failure	Criticality	Effect	Mitigation
Nose Cone	Fail to reduce drag	Low	Rocket doesn't reach estimated apogee	Keep iterating to produce the most optimized nose cone shape
Nose Cone	Crumples due to compressive load	High	Rockets drag is significantly increased	Design thickness according to calculations with a safety factor
Nose Cone	Breaks on landing impact	Medium	No more re- flyability (Point loss)	Design it to withstand impact with a safety factor

Boat Tail

- Lowest drag coefficient out of all three possible geometries.
 - The boat tail decreases our drag coefficient by 0.095.

FMECA

Part	Failure	Criticality	Effect	Mitigation
Boat Tail	Fail to reduce drag	Low	Rocket doesn't reach estimated apogee	Keep iterating to produce the most optimized aft end shape
Boat Tail	Breaks upon ground impact	Medium	Rocket no longer has re-flyability (Point Loss)	Design to withstand ground impact with safety factor

Water Ballast

Function/ Performance:

- Add weight for ascent
- Removed at descent or apogee
- Gain 1000 points
- Threaded Rod should sustain snatch force

Characteristics – TPM values:

- 500ml of water (1.1 lbs)
- Nose Cone Tip Weight (~1.6 lbs)

Geometry

• We're pursuing a trans-sonic and subsonic design until we get our actual values.

KNIGHTS EXPERIMENTAL ROCKETRY

Water Ballast (cont'd)

Parts: 1 – Nose Cone Tip 2 – Threaded Rod 3 - Baffles 4 - Lid 5 – Lock Nut 6 – Mesh Plate

Materials: Polycarbonate 3d print for Water containment portion

- Threaded rod
- Lock nut
- Nose cone tip made of steel

Water Ballast FMECA

Part	Failure	Criticality	Effect	Mitigation
Nose Cone Tip	Fails to Detach	Low	Water fails to release	Tolerance between nose cone tip and water ballast is increased
Baffles	Threaded Rod crushes baffles	Low	Baffles are damaged	Baffle Width is increased
Lid	Fails to seal water	Low	Chance of damaging electronics	Epoxy is used to seal the Water Containment
Mesh	Mesh breaks	High	The nose cone tip can separate from the main rocket creating a safety problem	Mesh becomes thicker.

Fin Cage Component Breakdown

- Our rocket will alternatively use fillets on each corner of contact for the fin tabs, as well as tip to tip pre preg wrap to support each fin
- This decision was made for the sake of simpler integration with the CC and thrust plate
- A support will be made and laser cut for holding the fins in place while they cure, then will be removed.

Fin tabs are inserted into an internal and external centering jig for manufacturing

KXR FAR10k Liquid 2024

Rail Guides Component Breakdown

Function/ Performance:

- Hold rocket to rail
 - Supports rocket so stability can effectively develop
 - Prevents any misalignment of trajectory during launch
- Permanent feature, now a part of rocket and influences flight character
- Upstream guide: ~115 inches from the nose tip
- Downstream guide: ~205 inches from the nose tip

ltem	Full Item Description	Cost	Qua	Total	Link (not
			ntity		hyperlink)
Polycarbonate	Black PC Filament 1.75 mm 3D Printer	\$25	2	\$50	CC3D global
filament	Filament 1 KG Spool 2.2LBS				
	Dimensional Accuracy +/- 0.05mm 3D				
	Printing Polycarbonate Material				
Screws	Alloy steel socket head screws.1-72.	\$7.23	1	\$7.2	McMaster-
	Item number 91251A068			3	Carr
nuts	High strength steel hex nuts. Item	\$10.9	1	10.9	McMaster-
	number 94895A815	2		2	Carr
Graphene	Lucky Line 4.5 Grams of Dry Lock	\$3	2	\$6	Lucky Line
powder	Lubricant Graphite Powder for Pin				
	Tumbler Locks, 1 Tube (95001)				

Rail Guides Component Breakdown

A: Static Structural Maximum Principal Stress

11/28/2023 1:35 AM

6.3371e7

5.5185e7

4.6998e7

3.8812e7

3.0625e7 2.2439e7 1.4253e7 6.0662e6 -2.1202e6 Min

7.1557e7 Max

Unit: Pa

Time: 1 s

Type: Maximum Principal Stress

Designed and evaluated at 600lbs

Estimated Factor of Safety of 2.78

 $P_f L_f + P_a L_a - \mu \left| P_f + P_a \right| R_T = 0$

• Back plate will be utilized

Measure	TPM Value	Units	Verification Method
Resisted launch force	600	lbf	Testing
Mount length	4	inches	Demonstration
Mount height	1	inches	Demonstration
Drag from mount	4000	Pa	Analysis

3.934e+04

2.788e+04

1.643e+04

4.971e+03

-6.484e+03

-2.940e+04

-4.085e+04

-5.231e+04

6.376e+04

7.522e+04

FMECA

Part	Failure	Criticality	Effect	Mitigation
Bolt	Bolt tear out	High	Rail guides shear off, rocket fails to develop stability. Launch failure	Choose bolts with high strengths, design guides to be thick on face with rocket. Employ back plate
Rail guides	Flange failure	High	Rail flanges tear off, rocket fails to develop stability. Launch failure	Thicken flanges to withstand high safety factor

Fins

Function/Performance:

- Shall resist all loads and vibrations experienced in flight.
- The fins shall provide passive stability to the vehicle.

Characteristics – TPM values:

- Pressure [11.66 psi]
- Fin flutter velocity [3055 ft/s] safety factor of [3.92]

Fins

Part	Failure	Criticality	Effect	Mitigation
Fin	Flutter	High	Vibration	Make thicker/Shorter
Fin	Drag	Low	Decreased Apogee	Airfoil
Airfoil	Manufacturing	Medium	Time/Budget	Tolerance

Airfoil

Function/ Performance:

 Airfoil should minimize the aerodynamic forces acting on the vehicle.

Characteristics – TPM values:

- Pressure [11.66 psi]
- Fin flutter velocity [3055 ft/s] safety factor of [3.92]

Drag coefficient	Value	
Pressure Cd	1.15E-04	
Viscous Cd	1.51E-04	at UCF
Total (drag) Cd	2.66E-04	

 $y_t = 5t \left[0.2969 \sqrt{x} - 0.1260 x - 0.3516 x^2 + 0.2843 x^3 - 0.1015 x^4 \right],^{[5][6]}$

where:

x is the position along the chord from 0 to 1.00 (0 to 100%),

 y_t is the half thickness at a given value of x (centerline to surface),

t is the maximum thickness as a fraction of the chord (so t gives the last two digits in the NACA 4-digit denomination divided by 100).

KXR FAR10k Liquid 2024

Airframe Manufacturing

• Tubes

- Made of 3k 2x2 twill weave prepreg carbon fiber
- Roll the prepreg around a 6 in. metal mandril to build up layers and form the tube
 - Width of pre-preg is 39.4 in, which is twice the circumference, so one sheet will have 2 layers
 - Roll 3 sheets in total to make 6 plys
- Cure tube in autoclave and post-process as necessary
- Will need to manufacture 5 separate tubes*
 - Payload body tube: 38 inches
 - Recovery switch band: 2 inches
 - Lower recovery tube: 27 inches
 - N tank tube: 19 inches
 - Fuel tube: 31 inches
 - OX tube: 44 inches

*the recovery switch band (length/material) will be added and cut from the lower recovery tube piece

Airframe Manufacturing Contd.

- Nose Cone
 - Mold: Male mold; 3D-printed out of PLA plastic with extra length on ends as safety factor for material
 - Will take about 5 days to print
 - Will be printed in separate sections due to the size constraints of the 3D printer EXPERIM
 - These will be glued together, most likely with E6000
 - Wet-lay fiberglass sleeves over the 3D-printed male mold, according to lay-up schedule
 - Composite will be vacuumed and sealed in Autoclave
- Tip machined from 2 in. diameter steel rod
 - Will take 1-2 days to machine
- Water Ballast
 - 3D printed out of PLA
 - Will take only a few hours to print
 - The COTS threaded rod will be cut to size by us 91 KXR FAR10k Liquid 2024

Airframe Manufacturing contd.

Boat Tail

- Made from carbon fiber pre-preg
 - Will 3D print a male mold out of polycarbonate plastic (PCP)
 - It will be 3D printed in separate sections due to size constraints of the 3D printer, glued together most likely with a high temp. epoxy
- Will need to apply 8 layers of prepreg
 - Cure composite in the autoclave
- Then, insert the fins with epoxy and fillet them to the tail cone
 - May need a high temp epoxy/glue

• Then the tail cone will go back into the autoclave and cure to cement the fins in place

Airframe Manufacturing Contd.

• Fin Cage

- The material will be G10 fiberglass
 - The parts will be laser cut at a fabrication center and then assembled by us

• Fins

- Will be tapered, swept, trapezoidal and made from layered pre-preg
 - There will be a total of four fins.
 - The measurements are as follows:
 - Root chord 7.5in
 - Tip chord 5in
 - Height 5in
 - Swept length 2.5in
 - Sweep angle 26.5in
- The airfoil will be NACA0006
- The pre-preg will be cut to different lengths and shapes which will be stacked up to form the airfoil
 - This layering technique will be done for each side of the fin

Airframe Manufacturing Contd.

Holes

• We will be using the drilling collar to make our holes even spaced and the correct size

• Jigs

- For drilling we have a drilling collar made from plywood
- The drilling collar will double as our cutting collar
- The rocket stands will be made from plywood and cut with the laser cutter in the TI Lab
- Rail Guides
 - 3D printed out of polycarbonate plastic

Manufacturing Process Plan (MPP)

			Read the instructions on the		DO NOT MIX the resin
			Epoxy/Resin label to find the		and hardner until you are
			proper mixing ratios. Follow the		ready to lay. Be ready to
			instructions to a tee to ensure best		work quickly from this
			results. Mix your Epoxy/Resin ONE	gloves,	point on, the Epoxy/Resin
			LAYER AT A TIME. eg. mix epoxy for	goggles, respirator,	will cure quickly so be
			layer 1, lay fiberglass+epoxy for	popsicle sticks,	sure to have your
		Epoxy/ Resin components	layer 1. Then mix and lay for layer	Epoxy/Resin, mixing	fiberglass and mold ready
Mix Epoxy/Resin for Layer 1	4	are mixed to the proper ratio	2, etc.	cups	to rock.
				gloves, goggles,	
			Apply a layer of resin to the mold to	respirator, mixed	
			seal any tiny pores or gaps in the	Epoxy/Resin, paint	Especially necessary if
Seal Mold	5	Seal mold with layer of resin	material before laying fiberglass.	brush	chosen mold is wood.
			Lay material on top of first resin		
			coat, ensure it's laid in the correct		
		Material is oriented correct,	direction, smooth out the material	1st layer of fiberglass,	
Lay First Layer of Material	6	no bubbles	with gloved hands	gloves	
					The exoxy/resin mix
					should be a specific
					amount proportional to
					the amount of material
					being covered. Use
		Even layer coats entire	Use paint brushes to evenly coat the	epoxy/resin mix, gloves,	expocy calcultor to
Apply Epoxy/Resin Mix	7	surface of material	material with the resin mixture.	paint brushes	calculate amount of mix
Repeat steps 10-11	8		Repeat steps 10-11 until all layers are	complete	

Apply Carbon Fiber Prepreg	4	6 plys of carbon fiber prepreg must be applied	Apply each layer in the same direction	PrePreg Carbon Fiber, Scissors, Gloves	If carbon fiber bubbles or wrinkles, remove said ply and start again
Apply release film over carbon fiber	5	1 layer of release film must be evenly placed on carbon fiber surfaces	Must be even and wrinkle free	Release film, scissors	
Apply breather cloth over	6	Wrap liberal amount of breather cloth over composite surface	Must cover entirty of the mandrel	Breather cloth, scissors	
Vaccum Bag entire mandrel	7	Create an envelope bag with gum tape and insert test coupon	Bag must be totally sealed	Vacuum bag, vacuum sealent tape, scissors	
Insert Vacuum Connector	8	Place vacuum connector through bag	Bag must be totally sealed	Vacuum connector, Scissors	
Pull Vacuum in Autoclave	9	Pull 1 atmosphere of vacuum pressure	Ensure vacuum holds	Autoclave	
Cure tube in Autoclave	10	Run cure cycle	Cure for 1 hour at 250F	Autoclave	
Remove Vacuum supplies	11	Cut test coupon out of vacuum bag	Ensure all breather cloth and vacuum supplies are removed	Scissors	

Steps 4 - 8 of Fiberglass Coupon for nose cone

Steps 4 – 11 of Carbon Fiber prepreg coupons for tubes and tail cone

- All the test coupon MPPs are finished, except for the fins' coupon, which is still being fleshed out. These MMPs include:
 - Body tube test coupon
 - Tail Cone test coupon
 - Nose Cone test coupon
- ⁹⁵ Fin test coupon

Machine Costs and Printing Times

Nose Cone

- Mold: 5 days to 3D print*
- Water Ballast: a few hours to 3D print*
- Nose Cone Tip: 2-3 hours to machine, the material is free. Total cost is < \$100.
- Tail Cone
 - Mold will take 4 days to 3D print*
- Chassis
 - 10 hours to machine
 - Material cost \$150
 - Total cost to manufacture is \$500
- Thrust Plate
 - 3.5 hours to machine
 - Will cost \$158

*only cost is for filament, between \$30-40

KNIGHTS EXPERIMENTAL ROCKETRY

Manufacturing Schedule

- Largely dependent on when materials arrive
 - Best case Jan. Apr., worst case Jan. May.

Questions?

CAD and Open Rocket KXR FAR10k Liquid 2024

KNIGHTS EXPERIMENTAL ROCKETRY

N

FAR 10k Propulsion CDR

KXRUCF

2

Propulsion System

Propulsion System Overview

Propulsion Functions

- Remotely controlled
- Generates thrust
- Stores and deliver propellants and pressurant throughout the system
- Indicates tank capacities
- Safely pressurizes and depressurizes the run tank

Propulsion Org Chart

Basilisk - FAR51025 2024

Propulsion CONOPS

Propulsion Interface Diagram

Propulsion System TPMs

Technical Performance Measure	Value	Unit	Verification Method
Total Dry Mass	59.6	lbs	Inspection
Total Wet Mass	83.879	lbs	Test
Total Propellant Mass	24.279	lbs	Test
Total Length	10.83	ft	Inspection
Burn Time	9	s	Test
Total Mass Flow Rate	2.5	lb/s	Analysis
Oxidizer/Fuel Ratio	3:01		Analysis
Maximum Thrust	550	lbs	Test
Specific Impulse	212.6	s	Test
Delta V	324.3326	m/s	Test
Target Apogee	10,000	ft	Test

Propulsion System Verification Methods

Pneumatic Injector Test

 Pressurizes water through injector to simulate propellant mixing

Verifies:

• Injector withstands injection pressures

Hydrostatic Test

Pressurizes the run tanks using water to measure leaks and deformation

Verifies:

 Fluids system withstands hoop stress and bolt shear and maintains pressures without leaks

Propulsion System Verification Methods

Cold Flow Test

 Full setup of fluids system and injector using nitrous oxide and isopropyl alcohol

Verifies:

- Fluids system maintains pressures without leaks
- interfaces correctly with avionics and GSE
- provides sufficient propellants for duration of the burn time
- Injector withstands injector pressures and mixes pressurants

Static Fire

 Full setup and ignition of propulsion system

Verifies:

- Thrust data, from GSE
- Propulsion system is reusable
- Fluids system interfaces with avionics and GSE

Propulsion Cost

Injector Combustion Fluid Systems Buffer

Propulsion System FMECA

System	Failure	Effect	Criticality	Mitigation
		Low initial thrust can cause the rocket to have a		Static fire engine and analyze thrust profile,
		low velocity off the rail resulting in instability		minimize weight of the rocket in order to achieve
Propulsion	Low Initial Thrust	and a poor flight profile	Medium	higher velocity off the rail
				Regularly analyze the and update the wight of the
		Exceeding the weight requirement will severely		design in CAD, communicate with aerostructures
		impact the stability and therefore apogee of the		whenever the weight is updated. Select components
Propulsion	Exceeding weight requirement	rocket, or cause schedule delays in redesign	High	and design for minimum possible weight.
		Ordering and shipping delays will negatively		Order all stock metal and long lead items before
		impact the schedule and prevent the successful		December 8th. Submit machining jobs through UCF
Propulsion	Procurement Delays	machining of components in a timely maner	Medium	machine shop as early as possible.
				Communicate effectively with the UCF machine shop
				about our schedule. Assemble a drawing book for the
		Delays in the machining shedule will shorten the		entire engine along with assembly drawings for each
		amount of time set aside for testing and		assembly and subassembly. Submit machining jobs
Propulsion	Machining Delays	verification processes.	Medium	before the senior design rush.

Fluids Subsystem

- Blowdown Fed
 - Blowdown has an initial pressure that starts to decrease over time
 - Performance loss over time
 - More propellant mass to make up for performance loss
- Regulated Pressure Fed
 - Constant pressure feeding the propellants
 - Minimal performance loss over time
 - Less propellant mass than a blowdown
 - Nitrogen supply a part of the propulsion system

Fluids Requirements

Functional Requirement	Verification Method
The Fluids Subsystem shall restrict/enable fluid flow throughout the propulsion system.	Demonstration
The Fluids Subsystem shall report Fuel tank pressure.	Demonstration
The Fluids Subsystem shall report Fuel tank fill volume.	Demonstration
The Fluids Subsystem shall report Oxidixer tank pressure.	Demonstration
The Fluids Subsystem shall report Oxidizer tank fill volume.	Demonstration
The Fluids Subsystem shall report Nitrogen tank pressure.	Demonstration
The Fluids Subsystem shall report Nitrogen tank fill volume.	Demonstration

Fluids TPMs

Technical Performance Measure	Value	Units	Verification Method
Operating Pressure	800	PSI	Test
Total Delivered Mass Flow	2.5	Lb/s	Test
Delivered Fuel Mass Flow	0.625	Lb/s	Test
Delivered Oxidizer Mass Flow	1.875	Lb/s	Test
Nitrous Oxide Total Weight	16.875	Lbs	Demonstrate
Ethanol Total Weight	5.625	Lbs	Demonstrate
Nitrogen Total Weight	1.779	Lbs	Demonstrate
Dry Mass	40	Lbs	Inspection
Wet Mass	62.5	Lbs	Inspection
Total Height	10	Feet	Inspection

Fluids Interface Diagram

Fluids Component Breakdown

18

Components List:

- 4 struts
- 4 bulkheads
- 2 tanks (Fuel and Oxidizer)
- Other Materials: •
 - 8 O-ring
 - 76 Stainless Steel Bottom Head Hex Drive Screws ($\frac{1}{4}$ -20 thread size, $\frac{1}{2}$ length)
- Stock Lead times:
 - All our materials has less than 15 days for delivering.

Tank Interface Struts Total Deformation

Rocketry

Tank Interface Struts Compression Loading (Due to Launch)

- Updates from PDR
 - 9s burn time
 - Increase in volume
 - Increase in height
- Used a Safety Factor of 2 for all calculations
- 20% Oxidizer & 10% Fuel tank volume dedicated to Ullage
- MEOP 800 psi (CC 750psi MEOP + SF)
- Total Weight of Fuel, Oxidizer and Nitrogen tanks (Dry) (including plumbing)= 52.9lb
- Full-Assemble tanks (Wet) = 75.6lb (total weight of the Propellant system)

							_			_				
In	nitial C	ondit	ions:	\sim	Valu	<u> </u>		Oxidizer	~	Valu	e ~	Fuel	~	Value 🗡
_	T	4		(11- /-)		2.5		Mass Fl	ow (lb/s)	1.87	5	Mass Fl	ow (lb/s)	0.625
	lotal l	Vlass	FIOW	(Ib/s)		2.5			Mass (lb)	16.87	75		Mass (lb)	5.625
				O/F		3		Volun	ne (in^3)	620.3	60	Volur	me (in^3)	201.159
		D		,				Volume wi	th Ullage	744.4	31	Volume wi	th Ullage	221.275
		Bui	n In	ne (s)		9		Height of	Tank (in)	44.11	.8	Height of	Tank (in)	14.595
Force	of	Rulk	thea	d		M	ini	imum Nu	mber	ofF	Bolts	Bolt Shear	TDV	
1 0100	011	Jur	<u>u</u> rou	14		<u></u>			moor	VIL	10110	Bolt Shear		
		π				1		$F_{\rm hull}$	L-				$\left(\frac{\pi}{A}(D_i)^2\right)$	$^{2} \times MEOP$
F_{bulk}	= (~ (L	$(i_{i})^{2}$	$\times M$	EOP	$) n_b$	olt	$t_s = \frac{v_{aa}}{r_{ma}}$	ix .			$\sigma_{bolt \ shear} =$	$\frac{(+)}{(\pi_{(J)})}$	12 x m)
	(4				/	200000	rbol	t				$(\overline{4})^{(a_b)}$	$olt)^{-} \times n$
Bulkhood	חו	E bull	/	Bolt Dia	motor	Rolt Are		Rolt I Iltimate	Max Bo	J+ N/i	n #	Recommend	ad Bolt SI	hear
Buikileau			`		inetei	BOIL ALE		Stress	Force	Bo	lts	# Bolts		lical
4.75		14176	.437	0.25		0.049	7	72000	3528	4.0	018	10	28931	5
in		lbs		in		in^2	r	osi	lbs	#		#	psi	
Rolt I Iltin	nato St	ross	Ma	v Bolt	Min #	Rolts	Poc	commonded	Bolt Sha	ar	Safety	Eactor Bolt		
Boit Oitin	nate St	.1 53	For	re Ce	IVIIII #	DUILS	# Bo	olts	DOIL SHE	aı	Shear			
72000			353	2/ 2017	1 0111	1	10		28880		2			
psi			lbs	,4.2317	#	-	#		nsi		2			
1														
MEOP	Tank I	П	Tank \	Wall	Targe	t SF	E	Estimated	Max Sh	ear Str	ess SI	-		
NILOF			Thickr	ness	laige		F	Hoop Stress	Alumin	um	C	alculated		
800	4.75		0.125		2		1	15200	30000		1.	974		
nsi	in		in				p	osi	psi					

Struts:

- Tested with largest loading expected (5Gs)
- Fixed face selected for compression sim

Tanks:

- Tested with MEOP of 800psi
- Tanks will be constrained by ¼"-20 x 0.5 bolts

Basilisk - FAR51025 2024
Propellant Tanks

FMECA

Failure	Criticality	Effect	Mitigation
Structural Failure	High	Tanks rupture or explode	FEA and Hydrostatic test
Vibration and Shock	Medium	Excessive vibration can lead to fatigue failure	An internal structure support that will miligate the vibration
Seal Failure	Medium	Pressure or fluid leaks between tanks and bulkheads	Proper O-Ring sizing and optional High Vacuum Grease
Overpressurization	High	Tanks rupture or explode	A proper Relief System
Manufacturing Defects	Low	Flaws during manufacturing process may cause weak points	Buying materials from approved vendor
Electrostatic Discharge	High	Propellants ignite and tanks explode	ECD rated PPE should be used when handling

Sizing Nitrogen Tank

 Related the volumetric flow rates of the pressurant entering and the propellant leaving to derive this equation

•
$$\dot{m}_g = \frac{\dot{m}_L P_{g,i}}{\rho_{L,i} R_g T_{g,i}}$$

• $m_g = \dot{m}_g * Burn Time$ • $V_g = \frac{m_g R_g T_g}{P}$

Propellant	Tank Operating Pressure (psi)	Density of Propellant (lb/ft^3)	Specific Gas Constant (N2)	Nitrogen Temperature (K)
Ethanol	800	773.990	296.8	310
Nitrous Oxide	800	752.926	296.8	310
Propellant	Nitrogen Mass Flow Rate	e (lb/s) Nitrogen Mass Red	quired (lb) Nitrogen Vol	ume Required (Gallons)
Ethano	0.048	0.436		0.196

Nitrous Oxide	0.149	1.344	0.604
Total	0.198	1.779	0.800

 $P_{g,i}$

 ρ_L

 $-m_1$

Nitrogen Tank

- Aluminum tank overlayed with carbon fiber
- Commercial off the Shelf (COTS)
- Cost of \$325
- Total Volume of 4.67 L ~ 1.2 Gallons
- Weight of 3.5kg ~ 7.7 lb
- 4500 psi Maximum Operating Pressure
- CGA 347 thread
- Clamping bulkhead system for propulsion system interface
- Nitrogen is easier to obtain than helium

Nitrogen Tank Interface

- Nitrogen Tank stabilized within the airframe
 - Threaded rod connects nitrogen tank to the top bulkhead and the electronics bay
 - Crowns held in place by straps
- Avionics PCB^2 sits on top of Nitrogen Tank

Internal Structures

Fluid Systems Mechanical Interfaces:

- Centering (plywood) rings --> pressure vessels
- System via lower bulkhead --> Flush with shoulder/thrust plate
- Fuel and OX --> Inter-tank Struts
- Nitrogen Tank --> Top of Fuel bulkhead
- Nitrogen Tank --> Underside of drogue bulkhead
- Nitrogen Tank --> Avionics Enclosure (PCB^2)

Basilisk - FAR51025 2024

Pressure Regulator

- Spring-loaded high-flow pressure regulator
- Rated to 6000 psi inlet pressure and 1500 psi outlet pressure (Safety factor of two)
- Cost: \$348
- Temperature rating: 60 F
- Cv 0.8
- Weight 2.75 lb Length: 6.5 in Diameter: 3 in
- Inlet Pressure: 3000 psi
 Outlet Pressure: 800 psi
- Inlet NPT fitting of 0.25 in Outlet NPT fitting of 0.5 in

KNIGHTS EXPERIMENTAL ROCKETRY

Aqua Environment 873

Nitrogen Ball Valve

- Hy-Lok 105 series 0.25 inch tube compression fitting
- Placed after pressure regulator
- Servo-actuated using gears
- Torque requirements: 28.4 inch-pounds
- Torque: 52 inch-pounds servo
- Max power draw: 24.6W
- Gears will be machined for free by KXR
- Temperature rating: -65 F
- Pressure rating: 10,000 psi
- Cv of 1.2
- Cost \$139

Nitrogen Check Valves

- Hy-Lok 700 series
- Size: 0.25 inch compression fitting
- Two are placed after nitrogen feed line splits to prevent intermixing of propellants
- Cv: 0.67
- 316 Stainless Steel
- Pressure rating 6000 psi
- Cost: \$38 each

Nitrogen/Oxidizer Fill Check Valves

- Hy-Lok 700 series check valve
- Has Female NPT inlet and outlet
 - Interfaces with LTI quick disconnect
- Cv of 0.67
- Used for both Nitrogen and Nitrous Oxide Fill
 - Keeps fluids from flowing back into the supply bottles
- 316 Stainless Steel
- Pressure rating 6000 psi

Fuel and Oxidizer Ball Valves

- Hy-Lok 105 Series Ball Valves with Panel Mount
- 3/8" Tube Compression Fitting for Fuel
 - Cv of 3.7
 - Flow Rate = 5.834 GPM
 - Ethanol Specific Gravity = 0.788
 - Pressure Drop ~ 2 psi
- 1/2" Tube Compression Fitting for Oxidizer
 - Cv of 7.5
 - Flow Rate = 17.953 GPM
 - N2O Specific Gravity = 0.754
 - Pressure Drop ~ 4 psi
- Same servo mounting plate as the nitrogen ball valve
- Torque Requirements
 - Ethanol = 12.4 inch-pounds
 - N2O = 18.6 inch-pounds
- Temperature rating: -65 F
- Pressure rating: 10,000 psi

 $\Delta P = G^* \underline{Q} l^2$

Active Relief System

Normally-Open Vent Valve

- NC Solenoid Controls Pressure 7 Watts, 24VDC
- Manufactured and designed here at UCF
- Tees off from the Nitrogen tank
- Controlled by PCB^2 through PTs
- 1x for the Nitrous Tank

Vent P&ID

Basilisk - FAR51025 2024

Thermocouples

- Purpose: Verify fill of the oxidizer tank
- Operating Temperature: 173.15 to 1523.15 K
- Probe Diameter: 1/5 inch
- Probe length: 4 inches

Pressure Transducers

35

• Pressure Range: 0 to 3000 psi • Operating Temperature: 233.15 to 398.15 K Supply Voltage: 24 VDC • Electrical Connection: 9.4 mini DIN • Output: 4-20 mA

Passive Relief System

- **COTS** Generant Relief Valve
- Set pressure by manufacturer
- Only actuates in high-pressure fail cases
- Vents directly into airframe
- ¹/₄" NPT Has dedicated NPT port on bulkhead
- 1x per tank

Burst Disk

- Rated to open at 1500 PSI to vent system in case of RV failure
- COTS NPT fitting attachment

$$Q_{s} = P_{u} d_{o}^{2} \frac{C\pi}{4\rho_{s}} \sqrt{\frac{kM}{ZRT} (\frac{2}{k+1})^{\frac{k+1}{k-1}}} 60$$
$$Q_{s} = K P_{u} d_{o}^{2}$$
Formula for flow when flow is choked

Generant

HPRVA

Relief SCFM — Max Reg SCFM

Basilisk - FAR51025 2024

Power and Data Wire Bundling

- Braided Sleeving
 - Bundles wires from servos, thermocouples, pressure transducers, solenoids and PCB, reducing vibration
 - Allows wires to be easily split-off from main bundle
- Heat Shrink Tubing
 - Prevents braided sleeving from splitting and reduces wire vibration
- JST PH Connector Plugs
 - Connect propulsion electronics bundle to PCB wire bundle
 - Enables quick separation of Nitrogen and propellent assemblies
 - Allows for easy assembly, test setup, launch prep and repair
- Zip Ties and Wax String
 - Secure all wire bundles to chassis, reducing shifting, vibration and strain

Braided Sleeving + Bundle Splitting

Heat Shrink + Connector Plugs

JST PH Connector Plug

Feedlines & Fittings

• Fittings

- Primarily compression fittings for ease of assembly
 - Hy-lok
- NPT $\frac{1}{4}$ " used to connect to relief system
- Cost ~ \$400
- Feedlines
 - $\frac{1}{4}$ OD, .18" ID, and 30" length for pressurant line
 - $\frac{1}{2}$ " OD, .402" ID and 11" length for oxidizer line
 - $\frac{3}{8}$ " OD, .326" ID and 64" length for fuel line

Feedlines & Fittings

- Pressure drop for ethanol line: 12 psi
- Pressure drop for Nitrogen line: > 1 psi
- Pressure drop for Nitrous Oxide line: > 5 psi

$$\dot{\mathbf{m}} = \frac{Ap_{t}}{\sqrt{T_{t}}} \sqrt{\frac{\gamma}{R}} M \left(1 + \frac{\gamma - 1}{2} M^{2}\right)^{-\frac{\gamma + 1}{2(\gamma - 1)}}$$

$$\Delta p = f \, \frac{L}{D} \, \frac{\rho V^2}{2}$$

$$\dot{m} = \rho v A$$

Fluids Systems FMECA

Part	Failure	Criticality	Effect	Mitigation
Run valves	Freeze	High	No propellant going to injector; no thrust	Verify that valves can handle anticipated temperatures
Run valves	Power loss	High	No propellant going to injector; no thrust	Backup power system/source
GSE interface	Not disconnecting	High	Drag GSE equipment with rocket; possible rocket travel in wrong direction	Verify with testing that GSE interface will separate
Relief Solenoid	Power loss	Medium	No active pressure relief on vehicle	Backup power system/source
Nitrogen Regulator	Freeze up	Medium	Chance of regulator freezing in full open or close poisitions	Mitigate by making sure nitrogen in tank is warm enough
Nitrogen Regulator	Leak	Medium	More pressure allowed through system than desired; possible other component failure	Ensure selected regulator meets anticipated temperatures
Relief solenoid	Freeze	Medium	No active/constant pressure relief (depends on state when frozen)	Verify solenoid can handle anticipated temperatures
Relief Solenoid	Leak	Medium	Constant loss of pressure; possible expend all pressurant and decrease operating pressure	Verify valve can handle anticipated pressures and temperatures. Keep piping free of particulate matter
Nitrogen Regulator	FOD causing damage to sealing surface	Low	Slow leak	Filter in pressure regulator and filter in nitrogen fill lines

Fluid Systems Manufacturing

- Bulkheads
 - Material for 4 aluminum 6061-T6 bulkheads ~ \$100 in stock
- Tank Walls
 - Aluminum 6061-T6 tube stock ~ \$80 in stock
 - May need to turn ends depending on tube stocks "roundness"
- Load Bearing Struts
 - Milled out of billet aluminum 6061-T6
- Feed Lines

41

- All stainless-steel feed lines will be bent by our team using bending jigs
- Hy-Lok fittings and flares will be done by our team
- All aluminum components will be machined by the UCF machine shop with rough quoting as follows

Basilisk - FAR51025 2024

- Per Bulkhead ~ 4 Hours at \$35 an hour
- Per Tank Wall ~ 1 Hours at \$35 an hour
- Per Strut ~ 1 Hours at \$35 an hour
- Rough total of around \$1200 for all machining and stock not including hardware

Combustion Subsystem

Basilisk - FAR51025 2024

Combustion System Requirements

Functional Requirement	Verification Method
The Combustion Subsystem shall ignite the propellants.	Demonstration
The Combustion chamber shall withstand ignition temperatures.	Demonstration
The Combustion chamber shall withstand burn temperatures.	Demonstration
The Combustion chamber shall withstand burn pressure.	Analysis
The Combustion chamber shall seal all pressure.	Demonstration
The Combustion chamber shall direct the flow of the propellant flame	Demenstration
toward the aft end of the vehicle.	Demonstration

Combustion System TPMs

Technical Performance Measure	Value	Units	Verification Method
Chamber weight	4.73	lbs	Inspection
Chamber Length	9.5	in	Inspection
Chamber Maximium Outer Diameter Injector End	4.5	in	Inspection
Chamber Maximium Outer Diameter Aft End	3.25	in	Inspection
Maximum Chamber Pressure	500	psi	Analysis
Maximum Chamber Temperature	2550	К	Analysis
Burn Time	9	sec	Test

Combustion Component Breakdown

Basilisk - FAR51025 2024

Combustion Interface Diagram

Combustion Chamber and Nozzle

- Constructed as a single component out of printed inconel 718
 - Manufacturing and assembly benefits to printing geometry
- Length: 9.5 inches
- Chamber outer diameter: 3.25 inches
- Chamber flange outer diameter: 4.5 inches
- Mass: 4.73 lbm

KNIGHTS EXPERIMENT

Combustion Chamber Thermochemistry

- Various O/F ratios plotted at a constant chamber pressure of 500 psi
- Characteristic velocities (C*) and combustion temperatures generated by NASA CEA
- Peak C* occurs at an O/F ratio of ~4
- O/F ratio of 3 selected for engine to minimize combustion chamber temperatures while maintaining good characteristic velocity
- Estimated chamber temperatures at 95% combustion efficiency is ~2550 K
- Estimated specific impulse at 95% combustion efficiency is 212.6 seconds

Chamber Sizing and Nozzle Performance

- Initial expansion ratios and C* values found using NASA CEA
- Design values found using Rocket Propulsion Analysis (RPA) with following parameters:
 - o Chamber pressure: 500 psi
 - o O/F: 3
 - o m: 2.5 lbm/s
 - \circ L*: 63 in
 - Yields higher combustion efficiencies
 - \circ Contraction ratio: 9.64
 - Assumes liner thickness of 1/8" to simulate mid-burn conditions
 - \circ Expansion ratio: 5.28
 - Assumes nozzle exit condition of 13 psi
- Resulting thrust at optimal expansion is 531.5 lbf
- Chamber hoop stress calculated at room temperature and worst-case scenario material temperature (liner burn-through)

Thrust and mass flow rates
Chamber thrust (opt): 531.46950 lbf
Specific impulse (vac): 233.23208 s
Chamber thrust (vac): 583.08021 lbf
Specific impulse (opt): 212.58780 s
Total mass flow rate: 2.50000 lbm/s
Oxidizer mass flow rate: 1.87500 lbm/s
Fuel mass flow rate: 0.62500 lbm/s
Geometry of thrust chamber with parabolic nozzle
Dc = 3.00 in b = 40.00 deg

De	=	3.00	in	. b=	40.00	deg		
R2	=	1.81	in	R1 =	0.72	in		
L*	=	63.00	in					
Lc	=	7.49	in	Leyl =	5.35	in		
Dt	=	0.97	in					
Rn	=	0.18	in	Tn =	19.38	deg		
Le	=	2.00	in	Te =	15.28	deg		
De	=	2.22	in					
Ae/At	=	5.28						
Le/Dt	=	2.07						
Le/c15	=	84.71	8	(relative t	o length	ı of	cone	nozzl

Inputs	Value	Units
Chamber pressure	500	psi
Combustion chamber wall thickness	0.125	in
Combustion chamber OD	3.25	in
Chamber material tensile stress	150000	psi
Chamber material tensile stress (at 800 C)	79770.8	psi
Outputs	Value	Units
Hoop stress	6500.0	psi
Factor of safety	23.077	
Factor of safety at operating temperature	12.272	

e with Te=15 deg)

Combustion – Boat Tail and Fins Interface

Requirements given by Aerostructures:

- Maximum outer diameter at injector end: 4.5 inches
- Maximum outer diameter at aft end: 3.25 inches
- Satisfies clearance requirements for igniter installation and fin cage integration

KNO3 Pyrotechnic

- Rocket Candy
 - 65% Potassium Nitrate (oxidizer)
 - 35% Sugar (fuel)
 - 75 grams total
- Cost
 - \$2.20 Per Batch
- Extremely Reliable
 - Burn Time 6 Seconds
 - Burn Temp 1347 C

6 second burn time for 75 gram sample above

Ignition Stand

Delivery

- Nozzle inserted dowel
- Easy installation and removal during testing
- 2 attached legs, 1 free leg, tape to seal

• Cost – Free!

- Ignition Stand created using sources of free PLA
- Will be destroyed and expelled in Basilisks combustion
- Risk of blowout before ignition
 - Mitigated by 3 leg clamp system

E-matches

- 9v Initiator
- 3 for Redundancy
- Ignited through ground support to light KNO3Pyro
 - 2 Watts needed to ignite.
- Cost \$4.50 per attempt

Ignitor Interface – Lessons Learned

- Cannot remove the nozzle, only access through top \bullet
- If coating the liner (last year's delivery) •
 - 12 bolts must be removed to paste
 - If static fire failed, 12 bolts must be removed to clean 0

- Access from beneath rocket requires no disassembly.
- The flame will burn radially from the center providing faster ignition
- There will be no residue of the ignitor anywhere along the chamber walls after ignition.

Basilisk - FAR51025 2024

54

Ablative Liner

- Peak chamber temperatures of 2550 K
- Liner thickness increased to 1/4" to prevent cracking and reduce inconel erosion over the component lifetime
- Starlite
 - Great insulation and heat dispersion
 - Ease of manufacturing (epoxy, cornstarch, flour, sugar, baking soda, borax)
- Tapered up until the engine throat
 - Volume ~12 in³
- \$0.80 per liner using last year's epoxy

Hot Side: 823 K = 1022 F Cold Side: 329 K = 133 F (¼" Sample)

Ablative Liner Molding

- Based on last year's mold
- SLA printed
- Modified to allow for a taper
- M6 Screws and caulking to secure both halves together
- Hollow chamber to hold water to prevent thermal run away

Bolts and O-rings

 $\sigma_{Bolt} =$

18-8 Stainless Steel Socket Head Screw

70000

22553.9

 $\times 100 \approx 310\%$

10-32 Thread Size, 2" Long, Partially Threaded

 $\underline{P_{Manifold} \times A_{Injector\ cavity\ surface}}$

 $(\frac{n_{bolts} \times \pi \times (D_{Bolt \ minor})^2}{2})$

- 8 Bolts
- Integration with injector
- 70,000 psi tensile strength
- Calculated bolt tensile stress of 22553.9 psi
- Safety factor of 3.1

O-rings and Nuts

(3.385° Actual) (3.385° Actual) (3.385° Actual) (3.385° Actual) (3.385° Actual) (3.385° Actual) High-Temperature High-Purity Silicone O-Ring 3/16 Fractional Width, Dash Number 337

Static Crush Gland SealRated to 477.59 kelvin

316 Stainless Steel Flange Nuts Super-Corrosion-Resistant, 10-32 Thread Size

- 8 Nuts
- Same material as bolts

10-32

0.375in

Combustion Manufacturing

- Combustion Chamber
 - DMLS Inconel 718
 - Printed axially for ease of post machining
 - Since part is so large, it will need a print pause to add more powder to the vat
 - Post machining needed for internal geometries
- Ablative Liner
 - SRAD mold for Starlite
 - 3D Printed ABS filament
 - Needs to be dried for rigidity
- Igniter Holder
 - FDM 3D printed PLA

Preliminary combustion chamber cad in Cura slicer to show print orientation

Combustion FMECA

Part	Failure	Criticality	Effect	Mitigation
Ignitor	E-match fails to ignite rocket candy	High	Propellants do not ignite, and rocket does not launch	Three e-matches for redundancy and e- match testing before launch.
Ignitor	Ignitor is unable to stay on the nozzle	High	Is unable to ignite propellants and rocket does not launch	Testing Ignitor during static tests and evaluating
High Pressure Seals	Chamber fails to completely seal to injector	High	Combustion Chamber breaks away from Basilisk	8 high tensile strength bolts are used
Ablative Liner	Ablative Liner fails to insulate the chamber from the heat of the engine	Low	Chance that chamber takes damage from burn	Testing Starlite against high temperature for conformation of insulation
Ablative Liner	Ablative liner fails to be removed from mold	Low	Ablative liner is unable to protect chamber	Testing Starlite in last year's mold, if it fails reassess how to design mold

Injector Subsystem

MX M

Injector Requirements

Requirement	Verification Method	
The Injector shall be able to withstand ignition temperatures.	Test	
The Injector shall be able to withstand burn temperatures.	Test	
The Injector should be able to produce a combustion efficiency (C*) of at	Analysis	
least 90 to 95%.	Allalysis	
The Injector should maintain an equivalence ratio of 3:1.	Analysis	
The Injector shall be able to withstand pressurization stress.	Test	
The injector shall mix the presssurized fuel and oxidizer.	Demonstration	

Injector TPMs

Technical Performance Measure	Value	Units	Verification Method
Maximum Ignition Temperature	2550	К	Analysis
Ethanol Mass Flow Rate	0.625	lbm/s	Test
Nitrous Oxide Mass Flow Rate	1.875	lbm/s	Test
Minimum Pressure Drop from Inlet and Combustion Chamber	20	%	Test
Maximum Stress from Pressurization	7500	psi	Analysis

Injector Interface Diagram

Injector Housing

The Injector Housing takes in the oxidizer and is the main interface component between Injector and the rest of the airframe.

6061 Aluminum: Cost Effective and Reliable

Integration

- 8 Bolts on outer edges attach Injector and Combustion Chamber
 - 18-8 Stainless Steel Socket Head Screw, 10-32 Thread Size, 2" Long, Partially Threaded
- Strut supports integrate with the airframe (1/4-20 Bolt Interface)
- O-rings seal Face Plate and Pressure Transducer
- 4 Bolts secure pintle to Injector Housing (#6-32 Straight Tap)

• Design Considerations:

- Pressure Transducer must read chamber pressure
- Strut Bolts must withstand chamber thrust
- All elements must fit within 4.5" OD

Functional and Performance Requirements	Verification Methods
The Injector Housing shall intake 750psi of oxidizer through an intake channel.	Demonstration
The Injector Housing shall maintain seal integrity with proper sealants.	Demonstration
The Injector Housing shall withstand the vibrations, shocks, and temperature/pressure fluctuations of a rocket launch and thrust from the combustion chamber	Inspection
The Injector Housing shall be able to evenly distribute the force of the engine evenly across the structure of the airframe	Demonstration

Pintle – Mechanical Design

Facilitates the flow of Ethanol fuel into the combustion chamber for atomization

Material

• Aluminum 6061-T6; cost-effective and dependable

Fuel Orifice

• 12x 0.039" diameter orifices (#61 drill)

Pintle Body

- 2.87" overall length
- 0.25" Inner Diameter
- 0.5" Outer Diameter

Screw Holes

- Counterbored for #6-32 machine screws
- 4 Screw Holes

Fuel Inlet

• 9/16"-18 SAE Tapped Hole

Design considerations:

- Pintle tip heating within material spec for 9s burn time
 - Film Cooling of ox sheet
 - Cool ethanol fuel

Functional and Performance Requirements	Verification Methods
The Pintle Body shall be able to withstand temperatures of 2600 Kelvin for 9 Seconds.	Test
The Pintle Tip shall withstand pressures of 750 psi for [9 Seconds	Test
The Pintle Tip shall generate combustion efficiencies of >95%	Analysis
The Pintle Body shall achieve <u>an</u> .625 lbs/s for the fuel.	Analysis
The pintle shall effectively facilitate the atomization of the ethanol with the annular nitrous oxide sheet.	Demonstration

Pintle – Fluid Design

- Desired ethanol mass flow rate of 0.625 lbm/s
- Optimal pressure drop of 150 psi verified through Ansys Fluent to achieve desired mass flow
- Evenly distributed pressure and velocity gradients at orifices
- Orifices to be undersized at start of testing campaign, bored out as necessary as testing progresses
 - Accounts for Cd discrepancies or other unknown flow behaviors

Value	Units
3	
500	psi
2.5	lbm/s
30	%
42.58	lb/ft^3
1.875	lbm/s
150	psi
0.8	
0.5	in
48.4	lb/ft^3
0.625	lbm/s
150	psi
12	
0.77	
	Value 3 500 2.5 30 42.58 1.875 150 0.8 0.5 48.4 0.625 150 12 0.77

Outputs	Value	Units
Propellant 1 (annular)		
Orifice area	0.04385318	in^2
Orifice diameter	0.5530	in
Velocity at orifice exit	144 596	ft/s
Propellant 2 (radial)		
Orifice area	0.0142449	in^2
Orifice diameter	0.03888	in
Orifice diameter to 64th of an inch	2.49	1/64 in
Velocity at orifice exit	130.538	ft/s
Propellant Stream		
Total momentum ratio (TMR)	0.30092594	
Blockage factor (BF)	0.2970	
Spray angle (from vertical)	39.764	deg

Face Plate – Mechanical Design

Material

• Aluminum 6061-T6

Oxidizer Orifice

- 1x 0.553" diameter
- Accounts for pintle OD

Faceplate

- 4.5" outer diameter
- 1.75" oxidizer cavity diameter
- 0.75" overall thickness

Oxidizer Inlet

• 3/4"-16 SAE Tapped Hole

Design Considerations:

- Central orifice height allowing for even distribution of oxidizer
- Pressure transducer hole location to correctly analyze and record chamber pressure

Face Plate – Fluid Design

- Primary role of face plate/oxidizer cavity is to evenly distribute fluid before injection
 - 3/8" height wall was added to the oxidizer cavity to achieve this
- Desired nitrous oxidize mass flow of 1.875 lbm/s
- Simulated in Ansys Fluent using a fluid of similar density to nitrous oxide at 305 K (~44 lb/ft^3)
- Verified even flow distribution with velocity gradient at oxidizer orifice
- Achieves optimal pressure drop of 150 psi

× -

Inputs	Value	Units
System Requirements		
O/F ratio	3	
Chamber pressure	500	psi
Total mass flow	2.5	lbm/s
Pressure drop across injector	30	%
Propellant 1 (annular)		
Density	42.58	lb/ft^3
Mass flow	1.875	lbm/s
Pressure drop, ∆p	150	psi
Discharge coefficient (Cd)	0.8	
Pintle OD	0.5	in
Propellant 2 (radial)		
Density	48.4	lb/ft^3
Mass flow	0.625	lbm/s
Pressure drop, ∆p	150	psi
Number of orifices	12	
Discharge coefficient (Cd)	0.77	

Outputs	Value	Units
Propellant 1 (annular)		
Orifice area	0.04385318	in^2
Orifice diameter	0.5530	in
Velocity at orifice exit	144.596	ft/s
Propellant 2 (radial)		
Orifice area	0.0142449	in^2
Orifice diameter	0.03888	in
Orifice diameter to 64th of an inch	2.49	1/64 in
Velocity at orifice exit	130.538	ft/s
Propellant Stream		
Total momentum ratio (TMR)	0.30092594	
Blockage factor (BF)	0.2970	
Spray angle (from vertical)	39.764	deg

Thrust Structure

- Thrust structure and injector housing integrated as one component
- Struts constructed out of ¹/₂" 6061-T6 aluminum rectangular tube
- Fastened to structure with 1/4"-20 18-8 stainless steel bolts
- Preliminary stress calculations found FoS to be 27.7, assuming peak thrust of 550 lbf
- Preliminary values verified through Ansys mechanical, minimal stresses and buckling

Functional and Performance Requirements	Verification Methods
The struts shall transfer 550 lbs. of thrust to from the injector housing to the thrust plate.	Demonstration
The struts shall structurally withstand 550 lbs. of force.	Analysis
The struts shall connect the propulsion system, aft of fluids, to aerostructures.	Inspection

Inputs	Value	Units
Expected peak thrust	550	lbf
Strut cross sectional area	0.1094	in^2
Strut angle (from vertical)	5.5	deg
Number of struts	4	
6061-T6 tensile yield strength	35000	psi
Outputs	Value	Units
Strut stress	1262.7	psi
Factor of safety	27.719	

Injector Housing – Thrust Plate Interface

- Struts are the primary structural interface to the rest of the vehicle
- Transfers load into thrust plate, transfers to vehicle airframe
- Clearances between airframe and thrust structure are large enough to access plumbing, fittings, and fasteners

71

Injector Manufacturing

- Component materials
 - Aluminum 6061-T6
 - Injector body ~ \$20 in stock
 - Pintle body ~ \$12 in stock
 - Face plate ~ \$20 in stock
 - Hardware and Fittings
 - Hy-Lok and Stainless-steel flange nuts and SHC Bolts
- All aluminum components will be machined by the UCF machine shop with rough quoting as follows
 - Injector body ~ 3 Hours at \$35 an hour
 - Pintle body ~ 2 Hours at \$35 an hour
 - Face plate ~ 3 Hours at \$35 an hour
- Rough total of around \$330 for all machining and stock not including hardware
- Surface Finish
 - Anodizing is an electrochemical process that converts the metal surface into a decorative, durable, corrosion-resistant, anodic oxide finish that can be up to 0.006" thick
 - The aluminum oxide layers melting point is 3,762°F compared to aluminums 1,221°F

Injector FMECA

Part	Failure	Risk	Effect	Mitigation
Injector Housing	The injector housing/thrust plate bolts shear	High	The injector housing gets shoved into the oxidizer tank and the rocket fails.	Stress testing during design to ensure the bolts are strong enough.
Injector Housing	Injector housing structurally fails	High	Loss of performance and possible loss of vehicle	Testing on stand and frequent inspection
Pintle	Overheating	High	Loss of propulsion / RUD	Testing on stand and frequent inspections
Face Plate	Overheating	High	Loss of propulsion / RUD	Testing on stand
Face Plate	Fails to maintain consistent pressure change across the anulus	Medium	Loss in performance and time / materials	CDF, testing on stand, and inspections
Struts	Structural failure	High	Loss of propulsion / RUD	Demonstration on test stand

KNIGHTS EXPERIMENTAL ROCKETRY

IN

Questions / Discussion

KXRUCF